QUANTUM ENTANGLEMENT & BELL IN-EQUALITY VIOLATION @ COLLIDERS Tao Han Pitt PACC, University of Pittsburgh International Workshop on New Opportunities for Particle Physics 2024 IHEP, Beijing, July 19, 2024

TH, M. Low, A. Wu, arXiv:2310.17696; TH, K. Cheng, M. Low, arXiv: 2311.09166; 2407.01672

Motivation

"If you think you understand quantum mechanics, you don't understand quantum mechanics."

-- Richard P. Feynman

"... it is my task to convince you not to turn a way because you don't understand it. You see my physics students don't understand it. That's because I don't understand it. Nobody does."

理查德·菲利普斯·费曼

Study QM in the HE relativistic regime!

Einstein-Podolsky-Rosen Paradox (Phys. Rev. 1935)

"Can quantum-mechanical description of physical reality be considered complete?" "Local Hidden Variable Theory"

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be

Provided Eventually.

John S. Bell's Inequality

"On the Einstein-Podolsky-Rosen paradox" (1964) Alice & Bob's individual measurements: $1 + P(\mathbf{b}, \mathbf{c}) \ge |P(\mathbf{a}, \mathbf{b}) - P(\mathbf{a}, \mathbf{c})|.$

Non-Communitivity is the key: Bell's Inequality CAN BE violated by QM measurements; but NOT by an EPR's Local Hidden Variable Theory . → "Quantum Information"

2022 Nobel Prize for physics: "pioneering quantum information science"

Clauser Zeilinger Aspect

What we don't do:

We DO NOT question QM !

We DO NOT test QM against the "Hidden Variable Theories". What we do:

In the framework of QFT, in the HE regime at colliders,

- We lay out the QM predictions / information.
- We calculate the QM correlations.
- Hope to establish the quantum tomography.
- Seek for BSM effects.

Quantum State

For a state vector $|\phi_i\rangle$

Density matrix

a state an observable

$$\phi = \sum_{i} n_i |\phi_i\rangle \langle \phi_i| \qquad \langle \mathcal{O} \rangle = \operatorname{Tr}(\mathcal{O}\rho)$$

For a pure state: $n_i = 1$; for a mixed state: $\Sigma_i n_i = 1$.

For a single qubit (*i.e.*, a doublet of spin, iso-spin etc.):

$$\rho = \frac{1}{2} \left(\mathbb{I}_2 + \sum_i B_i \sigma_i \right)$$

For a bipartite system (*i.e.*, $\frac{1}{2} \bigotimes \frac{1}{2}$)

$$\rho = \frac{1}{4} \Big(\mathbb{I}_4 + \sum_i \left(B_i^{\mathcal{A}} \left(\sigma_i \otimes \mathbb{I}_2 \right) + B_i^{\mathcal{B}} \left(\mathbb{I}_2 \otimes \sigma_i \right) \right) + \sum_{i,j} C_{ij} \left(\sigma_i \otimes \sigma_j \right) \Big)$$

 $B_i^{A,B}$ the polarizations, C_{ij} the spin-correlation matrix The 15 coefficients \rightarrow Quantum Tomography for the bipartite.

Quantum Entanglement

For a bipartite system, *i.e.*, $\frac{1}{2} \otimes \frac{1}{2} = 1 \bigoplus 0$: Singlet: Triplet: entangled \rightarrow $|0,0\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow)$ $|1,1\rangle = \uparrow \uparrow$

$$\frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow)$$

$$|1,1\rangle = |1,0\rangle = |1,-1\rangle = N$$

$$\rho \neq \sum_{a=1}^{N} p_a \ \rho_a^{\mathcal{A}} \otimes \rho_a^{\mathcal{B}}$$

 $\downarrow\downarrow$

 $\frac{1}{\sqrt{2}}(\uparrow\downarrow+\downarrow\uparrow)$ \leftarrow entangled

Quantum entanglement \rightarrow sub-states inseparable

Non-Separable

Separable

Peres-Horodecki criterion: a necessary condition for entanglement A state is entangled (inseparable) if a partial transpose $\rho^{T_2} = \sum_n p_n \rho_n^a \otimes (\rho_n^b)^{T} \text{ is not non-negative.}$

Quantum Entanglement

Peres-Horodecki criterion leads to several inequalities → Quantitative measure of entanglement

It has been a customary to introduce the concurrence, that can be written in C_i , the eigenvalues of C_{ii} :

Concurrence

$$\mathcal{C}(\rho) = \begin{cases} \frac{1}{2} \max(|C_1 + C_2| - 1 - C_3, 0), & C_3 \le 0\\ \frac{1}{2} \max(|C_1 - C_2| - 1 + C_3, 0), & C_3 \ge 0 \end{cases}$$

It is shown that :

 \rightarrow Quantum information even in space-like separation

Afik and Munoz de Nova, arXiv: 2003.02280

John Bell's Inequality

In our setting, Alice & Bob's two correlated measurements can be cast to a Glauser-Horne-Shimony-Holt form. Classical/LHVT should satisfy

$$\langle A_1 B_1 \rangle - \langle A_1 B_2 \rangle + \langle A_2 B_1 \rangle + \langle A_2 B_2 \rangle \le 2$$

Or:
$$\left| \vec{a}_1 \cdot C \cdot (\vec{b}_1 - \vec{b}_2) + \vec{a}_2 \cdot C \cdot (\vec{b}_1 + \vec{b}_2) \right| \le 2$$

QM may violate this in certain phase space !

E.g., choosing $A_1 = \sigma_1, \quad A_2 = \sigma_3, \quad B_1 = \pm \frac{1}{\sqrt{2}}(\sigma_1 + \sigma_3), \quad B_2 = \pm \frac{1}{\sqrt{2}}(-\sigma_1 + \sigma_3)$ $\implies |C_{11} \pm C_{33}| \le \sqrt{2}$

Top-pair leptonic + hadronic decays

Z. Dong, Dorival Goncalves, et al., arXiv:2305.07075 TH, M. Low, A. Wu, arXiv:2310.17696

optimized direction:

 $\vec{\Omega}_{\rm opt}(\cos\theta_W) = P_{d\to p_{\rm soft}}(\cos\theta_W) \,\hat{p}_{\rm soft} + P_{d\to p_{\rm hard}}(\cos\theta_W) \,\hat{p}_{\rm hard}$ $\kappa_{\rm opt} = 0.64$ (arXiv:1401.3021)

Quantum entanglement in high collisions: Fictitious states

$$C'(\Omega) = R_t^T(\Lambda_\Omega)C(\Omega)R_{\bar{t}}(\Lambda_\Omega).$$

Afik and Munoz de Nova, arXiv: 2003.02280 TH, K. Cheng, M. Low, arXiv: 2311.09166; 2407,01672

Quantum entanglement at high energies: Fictitious states

From a well-prepared quantum state to a fictitious state:

$$\bar{\rho} \to \sum_{a \in \text{events}} U_a^{\dagger} \rho_a U_a \neq U^{\dagger} \bar{\rho} U.$$

Thus, a measurement on a fictitious state depends on the frame/base choice of each measurement!

We showed: TH, K. Cheng, M. Low, arXiv: 2311.09166

 $\mathcal{C}(\rho_{\text{fictitious}}) > 0 \implies \mathcal{C}(\rho_{\text{sub}} \in \rho) > 0$

 $\operatorname{Bell}(\rho_{\operatorname{fictitious}}) > \sqrt{2} \implies \operatorname{Bell}(\rho_{\operatorname{sub}} \in \rho) > \sqrt{2}$

Fictious states carry the system quantum information!

Basis optimization

TH, M. Low, A. Wu, arXiv:2310.17696; TH, Cheng, Low, arXiv: 2311.09166; arXiv:2407.01672.

Partonic level results

Simulation results

Realistic simulations:

- Top-pair semi-leptonic channel
- MadGraph 5+Pythia 8+Delphes 3
- Detector effects by "parametric fit"

Entanglement $C > 0$			B	Bell's inequality violation $ C_{11} \pm C_{33} \le \sqrt{2}$ $s = \frac{\beta - 2}{\delta \beta}$		
	$Result(139\mathrm{fb}^{-1})$	Precision		$\text{Result}(3ab^{-1})$	Significance	
Boosted	0.276 ± 0.026	9.5%		0.23 ± 0.06	41σ	
Threshold	0.261 ± 0.008	3.0%		0.25 ± 0.00	7.10	

TH, M. Low, A. Wu, arXiv:2310.17696; Recent LHC studies for top leptonic/semi-leptonic decays: ATLAS: arXiv:2311.07288; CMS: arXiv:2406.03976 For a recent review, see e.g., arXiv: 2402.07972. Lepton colliders: $e^+ e^- \rightarrow t \bar{t}$ (other fermion pair)

(75)

Further remarks & Conclusions

- Collider experiments produce a vast data sample with rich combinations of quantum numbers: spin, flavor ...
- We clarify the "fictitious states", and propose observables.
- We identify the optimal axis choice to enhance the sensitivity.
- → encouraging results for entanglement & Bell inequality measurements.
- Our methodology is applicable to other colliders, other quantum systems: Qubits, Qutrits ... multiple particles ...

The World is quantum-mechanical ! QIS is NOW !