Solving the strong CP problem

without axions

Alessandro Strumia, talk at NOPP 2024 / $7/19$ From 2305.08908 and 2406.01689 with F. Feruglio, M. Parriciatu, A. Titov.

Introduction

The strong CP problem

Data show
$$
\mathscr{L}_{\text{QCD}} = \sum_{q} \bar{q} (i\rlap{\,/}D - M_q)q - \frac{1}{4} \text{Tr } G^2 + \theta_{\text{QCD}} \frac{g_3^2}{32\pi^2} \text{Tr } G\tilde{G}
$$
 with

• large CP violation in quark mixing, $\delta_{\rm CKM} \sim 1$;

• no CP violation in neutron dipole, $\bar{\theta} = \theta_{\text{QCD}} + \arg \det M_a \lesssim 10^{-10}$

but both quark masses M_a and δ _{CKM} originate from quark Yukawa couplings.

Solutions

- Axion. But: not observed so far; quality problem.
- P invariance broken by real $\langle h \rangle$ gives $m = m^{\dagger}$, but corrections, BSM.
- CP invariance broken by $\langle z_a \rangle$ and special Nelson-Barr mass matrices

 \setminus

 $M_q \sim \frac{q_L}{Q_c^c} \begin{pmatrix} yv & 0 \\ z \text{complex} & M \end{pmatrix}$ q_R Q_R Q_R^c (complex M

has real det, preserved with SUSY.

Getting $\bar{\theta} = 0$

Assume that CP is a spontaneously broken flavour symmetry, quark mass matrices are real constants c times powers k_a of CP-breaking operators z_a but no z_a^{\dagger} . Toy example with one z and $N_q = 2$ generations:

$$
M_q = \frac{q_{L1}}{q_{L2}} \begin{pmatrix} q_{R1} & q_{R2} \\ c_{11} z^{k_{11}} & c_{12} z^{k_{12}} \\ c_{21} z^{k_{21}} & c_{22} z^{k_{22}} \end{pmatrix}.
$$

det $M_q = c_{11}c_{22} z^{k_{11}+k_{22}} - c_{12}c_{21} z^{k_{12}+k_{21}}$ can be real for any c, z if the k_{ij} are

- 'charges' of a $U(1)$ spontaneously broken by z, or
- 'weights' of a modular symmetry

such that $k_{ij} = (k_{q_{Li}} + k_{q_{Rj}} + k_{H_q})/k_z$ and

$$
\det M_q = (c_{11}c_{22} - c_{12}c_{21})z^k \qquad \text{real if} \qquad k = \sum_{i=1}^{N_g=2} (k_{q_{Li}} + k_{q_{Ri}} + k_{H_q}) = 0.
$$

But only one 'scalar' z does not break CP, it can be U(1)-rotated to real. Physical CP-breaking arises if $U(1)$ is broken by multiple scalars z_a with different phases. This works in the same way for multiple z_a and any N_q , even adding heavy quarks, because det scales following the total charge k of its elements.

Getting $\bar{\theta} = 0$ and $\delta_{\text{CKM}} \neq 0$

Assume that the quark Yukawa matrices Y^u and Y^d have the general structure

$$
Y_{ij} = \sum_{\alpha} c_{ij\alpha} z_1^{k_{1\alpha}} \cdots z_N^{k_{N\alpha}} \qquad \text{with real } c \text{ and no } z^{\dagger}
$$

summed over the multiple integer solutions $k_{a\alpha} \geq 0$ (needed to get $\delta_{\text{CKM}} \neq 0$) to

$$
k_{z_1}k_{1\alpha} + \cdots + k_{z_N}k_{N\alpha} = k_{q_{Li}} + k_{q_{Rj}} + k_{H_q}.
$$

- det $M_q(\lambda z_a) \propto \lambda^k$ real for $k = \sum_i (2k_{Q_i} + k_{U_i} + k_{D_i}) + k_{H_u} + k_{H_d} = 0$.
- $\delta_{\text{CKM}} \neq 0$ can be obtained even assuming the $N_g = 3$ generations and no heavy quarks. In such a case there is a unique structure

$$
Y = \begin{pmatrix} 0 & 0 & c_{13} \\ 0 & c_{22} & Y_{23} \\ c_{31} & Y_{32} & Y_{33} \end{pmatrix}, \quad \det Y = c_{13}c_{22}c_{31}.
$$

For example realised with $N = 2$ scalars z_+ and z_{++} with U(1) charge 1 and 2

$$
Y = \begin{pmatrix}\n-1 & 0 & +1 \\
0 & 0 & c_{13} \\
0 & c_{22} & c_{23} z_{+} \\
+1 & c_{31} & c_{32} z_{+} & c_{33} z_{+} + c_{33} z_{++}\n\end{pmatrix}.
$$

Getting $\bar{\theta} = 0$ and $\delta_{\text{CKM}} \neq 0$

Assume that the quark Yukawa matrices Y^u and Y^d have the general structure

$$
Y_{ij} = \sum_{\alpha} c_{ij\alpha} z_1^{k_{1\alpha}} \cdots z_N^{k_{N\alpha}} \qquad \text{with real } c \text{ and no } z^{\dagger}
$$

summed over the multiple integer solutions $k_{a\alpha} \geq 0$ (needed to get $\delta_{\text{CKM}} \neq 0$) to

$$
k_{z_1}k_{1\alpha} + \cdots + k_{z_N}k_{N\alpha} = k_{q_{Li}} + k_{q_{Rj}} + k_{H_q}.
$$

- det $M_q(\lambda z_a) \propto \lambda^k$ real for $k = \sum_i (2k_{Q_i} + k_{U_i} + k_{D_i}) + k_{H_u} + k_{H_d} = 0$.
- $\delta_{\text{CKM}} \neq 0$ can be obtained even assuming the $N_q = 3$ generations and no heavy quarks. In such a case there is a unique structure

$$
Y = \begin{pmatrix} 0 & 0 & c_{13} \\ 0 & c_{22} & Y_{23} \\ c_{31} & Y_{32} & Y_{33} \end{pmatrix}, \quad \det Y = c_{13}c_{22}c_{31}.
$$

For example realised with $N = 2$ scalars z_4 and z_6 with U(1) charge 4 and 6

$$
Y = \begin{pmatrix} -6 & 0 & +6 \\ 0 & 0 & c_{13} \\ 0 & c_{22} & c_{23} z_6 \\ +6 & c_{31} & c_{32} z_6 & c_{33} z_6^2 + c_{33} z_4^3 \end{pmatrix}.
$$

More choices. More structures (including Nelson-Barr) adding heavy quarks.

Full QFT implementation

Must avoid z_a^{\dagger} : justified assuming $\mathbf{supersymmetry}$, possibly broken at high scale.

A global supersymmetric theory is described by

• the holomorphic super-potential

$$
W=Y_{ij}^u(z_a) U_i Q_j H_u+Y_{ij}^d(z_a) D_i Q_j H_d+\cdots
$$

where z_a are super-fields that break the flavour symmetry acting as

$$
Q_i \to \Lambda^{-k_{Q_i}} Q_i, \qquad \dots \qquad z_a \to \Lambda^{k_{z_a}} z_a.
$$

- the 'Kahler' kinetic term K can be general, as it does not contribute to $\bar{\theta}$.
- \bullet the gauge kinetic function f , real as we assume CP. For example the minimal form is $f = 1/g^2 - \theta/8\pi^2$ with $\theta = 0$.

CP as a flavour symmetry

The flavour symmetry \overline{F} can be

- Linearly realised: z_a are elementary scalars. $\Lambda(\theta)$ depends on the group element θ . Example: a U(1) with $\Lambda = e^{i\theta}$.
- Non-linearly realised: $\Lambda(\theta, \tau)$ depends on a special super-field $\tau \to \theta(\tau)$. Example: modular $SL(2, \mathbb{Z})$ with $\tau \to \frac{a\tau + b}{\tau}$ $\frac{a+1}{c\tau+d}$ and $\Lambda(\theta,\tau) \equiv c\tau+d$.

We assume that the flavour symmetry \overline{F} is **local** to avoid Goldstones.

Then F must have no **anomalies.** The $F \cdot SU(3)²_c$ anomaly is

$$
A = \sum_{i} (2k_{Q_i} + k_{U_i} + k_{D_i}) = 0.
$$

Its cancellation coincides with solving the QCD $\bar{\theta} = 0$ problem by imposing

$$
k = \sum_{i} (2k_{Q_i} + k_{U_i} + k_{D_i}) + k_{H_u} + k_{H_d} = 0
$$

if $k_{H_u} + k_{H_d} = 0$ meaning that the Higgs $H_{u,d}$ do not break flavour \digamma .

 $= 0$ understood if CP is an anomaly-free flavour symmetry not broken by Higgs.

Models with extra heavy quarks

In models with heavy quarks, for example $Q_R \oplus Q_R^c$, the mass matrix becomes

$$
\mathcal{M} = \begin{matrix} q_R & Q_R \\ q_L & y'v \\ Q_R^c & \mu & M \end{matrix}.
$$

Nelson-Barr assume $y' = 0$, real y, M , complex μ . Realised assuming U(1) charges

$$
\mathcal{M} = \begin{pmatrix} 0 & -1 \\ 1 & \begin{pmatrix} yv & 0 \\ cz & M \end{pmatrix} \end{pmatrix}.
$$

More general models have complex M, y', y and an anomalous light field content. In the full theory $\bar{\theta} = 0$ as real det $m_{\text{light}}M_{\text{heavy}}$. In the low-energy EFT $\theta = 0$ as

- complex det m_{light} cancels with
- anomalous gauge kinetic function $f_{\text{EFT}} = f_{\text{UV}} \ln \det M_{\text{heavy}} / 8\pi^2$.

It's the anomaly cancellation mechanism in string models with anomalous EFT.

Completing to a full theory needs: 1) a potential minimised by z_a with multiple phases, not nice with U(1); 2) mediators that give $k_{i\alpha} \geq 0$ only.

Better implementation with modular invariance. What's that? It's like a motivated $U(1)$ automatically broken in a predictive way by multiple scalars.

The string motivation

Modular invariance can be done as math independently from its string motivation.

Super-strings in $4 + 6$ dimensions are real. Chiral families of fermions can arise from compactifications on spaces with a complex structure. So CP can be a geometric symmetry spontaneously broken by the compactification.

Literature focused on $N = 1$ supersymmetry, that needs a Ricci-flat compactification with complex structure. Simplest geometry: compactification on orbi-folded 6d flat tori T^3 . We only need a 2d flat torus T, obtained writing a 2d space as $z = x + iy$ and imposing a PacMan lattice identification $z = z + \omega_1$ and $z = z + \omega_2$:

 $\tau = \omega_1/\omega_2$ tells the geometry: Im τ is the relative radius, Re τ is the twisting.

Modular invariance

Modular invariance is a sub-group of discrete global reparametrizations, as

$$
\left(\begin{array}{c}\omega_1\\\omega_2\end{array}\right)\rightarrow \left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{c}\omega_1\\\omega_2\end{array}\right)
$$

gives an equivalent lattice torus if a, b, c, d are integers with $ad - bc = 1$. So the 4-dimensional EFT contains a modulus superfield τ invariant under SL(2, \mathbb{Z})

Modular invariance

Modular invariance is a sub-group of discrete global reparametrizations, as

$$
\left(\begin{array}{c}\omega_1\\\omega_2\end{array}\right)\rightarrow \left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{c}\omega_1\\\omega_2\end{array}\right)
$$

gives an equivalent lattice torus if a, b, c, d are integers with $ad - bc = 1$. So the 4-dimensional EFT contains a modulus superfield τ invariant under SL(2, \mathbb{Z})

$$
\tau \to \frac{a\tau + b}{c\tau + d}.
$$

Unusual: appears integrating out infinite states, because of how strings experience the geometry (e.g. $R = 1/R$). Matter fields Φ transform as phase and scaling

 $\Phi \to (c\tau + d)^{-k_{\Phi}}\Phi$ with 'weight' k_{Φ} .

The minimal global SUSY action with $h \ll M_{\rm Pl}$

$$
K = -h^2 \ln(-i\tau + i\tau^{\dagger}) + \sum_{\Phi} \frac{\Phi^{\dagger} e^{2V} \Phi}{(-i\tau + i\tau^{\dagger})^{k_{\Phi}}},
$$

$$
W = Y_{ij}^u(\tau) U_i Q_j H_u + Y_{ij}^d(\tau) D_i Q_j H_d
$$

is modular invariant if Yukawa couplings transform with definite weights $Y_{ij}^q(\tau) \rightarrow (c \tau + d)^{k_{ij}^q} Y_{ij}^q(\tau) \quad \bigg| \quad k_{ij}^q = k_{q_{Ri}} + k_{q_{Lj}} + k_{Hq}.$

Modular invariance and CP

The only modular functions of τ with weight k and no singularity ('forms') are the Eisenstein series E_k , that transform nicely thanks to lattice summation

$$
E_k(\tau) \equiv \frac{1}{2\zeta(k)} \sum_{(m,n)\neq(0,0)} \frac{1}{(m+n\tau)^k}
$$
 finite and non-vanishing for even $k \ge 4$.

$$
\begin{array}{c|ccccccccc}\n\text{Weight } k & 0 & 1,2,3 & 4 & 6 & 8 & 10 & 12 & \cdots \\
\hline\n\text{Forms} & 1 & - & E_4 & E_6 & E_8 = E_4^2 & E_{10} = E_4 E_6 & E_{12} \sim E_4^3 + E_6^2 & \cdots\n\end{array}
$$

 \checkmark E₄ and E₆ are like two scalars with charge 4 and 6.

 \checkmark They have different phases:

Modular invariance and CP

The only modular functions of τ with weight k and no singularity ('forms') are the Eisenstein series E_k , that transform nicely thanks to lattice summation

$$
E_k(\tau) \equiv \frac{1}{2\zeta(k)} \sum_{(m,n)\neq(0,0)} \frac{1}{(m+n\tau)^k}
$$
 finite and non-vanishing for even $k \ge 4$.
Weight $k \mid 0$ 1, 2, 3 4 6 8 10 12 ...
Forms 1 - E₄ E₆ E₈ = E₄² E₁₀ = E₄E₆ E₁₂ ~ E₄³ + E₆² ...

- $\sqrt{E_4}$ and E_6 are like two scalars with charge 4 and 6.
- \checkmark They have different phases.
- \checkmark The modulus τ breaks CP, as $\tau \overset{\text{CP}}{\rightarrow} -\tau^{\dagger}$, $\Phi \overset{\text{CP}}{\rightarrow} \Phi^{\dagger}$.
- \checkmark Forms forbid negative weight $k < 0$.
- \checkmark Nicer than triangles.

Recap: $\bar{\theta} = 0$ from modular invariance

Assume:

- CP broken by modulus $\text{Re}\,\tau$ only.
- Supersymmetry, broken such that the gluino mass M_3 is real. E.g. gauge mediation. No weak-scale SUSY needed.
- Higgses don't break modular invariance, $k_{H_u} + k_{H_d} = 0$. Then:
	- $Y_{ij}^q(\tau) = c_{ij}^q F_{k_{ij}^q}(\tau)$ where c is real and F_k is a modular form with weight k.
	- No anomalies, no QCD modular anomaly. E.g. with SM quarks only:

$$
A = \sum_{i=1}^{3} (2k_{Q_i} + kv_i + k_{D_i}) = 0.
$$

• det M_q is a modular form with weight $A = 0$, so it's a real constant, so

$$
\arg \det M_u M_d = 0 \qquad \theta_{\rm QCD} = 0.
$$

- $\delta_{\text{CKM}} \propto \text{Im} \det[Y_u^{\dagger} Y_u, Y_d^{\dagger} Y_d] \sim 1$ has no special modular properties.
- Quark kinetic matrices Z_q can be made canonical via a quark linear transformation that affects q masses and mixing but not $\bar{\theta}$. Minimal Kähler:

$$
Y^q_{ij}|_{\text{can}} = c^q_{ij} (2 \text{Im}\,\tau)^{k^q_{ij}/2} F_{k^q_{ij}}(\tau).
$$

The Minimal MSSM Model

Simplest model: modular weights $k_Q = k_U = k_P = (-6, 0, +6)$ so det Y_q is real:

$$
Y_q|_{\text{can}} = \frac{q_{R1}}{q_{R2}} \begin{pmatrix} q_{L1} & q_{L2} & q_{L3} \\ 0 & 0 & c_{13}^q \\ 0 & c_{22}^q & c_{23}^q (2\text{Im}\,\tau)^3 E_6(\tau) \\ q_{R3} & c_{31}^q & c_{32}^q (2\text{Im}\,\tau)^3 E_6(\tau) & (2\text{Im}\,\tau)^6 \left[c_{33}^q E_4^3(\tau) + c_{33}^\prime E_6^2(\tau) \right] \end{pmatrix}.
$$

Onion-like form: a numerical or approximate diagonalisation

$$
y_3 \simeq y_{33}
$$
, $y_2 \simeq y_{22}$, $y_1 \simeq -\frac{y_{13}y_{31}}{y_{33}}$, $\theta_{23} \simeq \frac{y_{32}}{y_{33}}$, $\theta_{13} \simeq \frac{y_{31}}{y_{33}}$, $\theta_{12} \simeq \frac{y_{31}y_{23}}{y_{22}y_{33}}$
shows that all quark masses and mixings can be reproduced with comparable *c*

$$
c_{ij}^u \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.56 \\ 0 & -1.86 & 0.87 \\ 1.29 & 4.14 & 3.51, 1.40 \end{pmatrix} \qquad c_{ij}^d \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.55 \\ 0 & -2.59 & 4.59 \\ 0.378 & 0.710 & 0.734, 1.76 \end{pmatrix}
$$

for tan $\beta = 10$ and $\tau = 1/8 + i$. No predictions. The quark hierarchies are reproduced somehow like in $U(1)_{\text{FN}}$ Froggatt-Nielsen, thanks to the modular '6' e.g. $(2\text{Im }\tau)^6 = 64$ for $\tau \sim i$. However, string constructions tend to use lower weights.

The Minimal MSSM Model

Simplest model: modular weights $k_Q = k_U = k_D = (-6, 0, +6)$ so det Y_q is real:

$$
Y_q|_{\text{can}} = \frac{q_{R1}}{q_{R2}} \begin{pmatrix} q_{L2} & q_{L3} \\ 0 & 0 & c_{13}^q \\ 0 & c_{22}^q & c_{23}^q (2\text{Im}\,\tau)^3 E_6(\tau) \\ q_{R3} & c_{31}^q & c_{32}^q (2\text{Im}\,\tau)^3 E_6(\tau) & (2\text{Im}\,\tau)^6 \left[c_{33}^q E_4^3(\tau) + c_{33}^q E_6^2(\tau)\right] \end{pmatrix}.
$$

Onion-like form: a numerical or approximate diagonalisation

$$
y_3 \simeq y_{33}
$$
, $y_2 \simeq y_{22}$, $y_1 \simeq -\frac{y_{13}y_{31}}{y_{33}}$, $\theta_{23} \simeq \frac{y_{32}}{y_{33}}$, $\theta_{13} \simeq \frac{y_{31}}{y_{33}}$, $\theta_{12} \simeq \frac{y_{31}y_{23}}{y_{22}y_{33}}$

shows that all quark masses and mixings can be reproduced with comparable c

$$
c_{ij}^u \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.56 \\ 0 & -1.86 & 0.87 \\ 1.29 & 4.14 & 3.51, 1.40 \end{pmatrix} \qquad c_{ij}^d \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.55 \\ 0 & -2.59 & 4.59 \\ 0.378 & 0.710 & 0.734, 1.76 \end{pmatrix}
$$

for tan $\beta = 10$ and $\tau = 1/8 + i$. Leptons too assuming $k_L = k_E = k_Q$:

$$
c_{ij}^{e} = 10^{-3} \begin{pmatrix} 0 & 0 & 1.29 \\ 0 & 5.95 & 0.35 \\ -2.56 & 1.47 & 1.01, 1.32 \end{pmatrix} \qquad c_{ij}^{\nu} = \frac{1}{10^{16} \text{ GeV}} \begin{pmatrix} 0 & 0 & 3.4 \\ 0 & 7.1 & 1.2 \\ 3.4 & 1.2 & 0.19, 0.95 \end{pmatrix}.
$$

Modular sub-groups $\Gamma(N)$

Compactifications $+$ orbifolds/branes give modular sub-groups at higher level N

$$
\Gamma(N) \equiv SL(2, \mathbb{Z}) \text{ subgroup with } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bmod N.
$$

allowing models with SM quarks and lower weights as 'motivated' by strings. $\Gamma(2)$ has two modular forms with weight $k = 2$.

$$
Z_1^{(2)} = \frac{2i}{\pi} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - 8\frac{\eta'(2\tau)}{\eta(2\tau)} \right], \quad Z_2^{(2)} = \frac{2\sqrt{3}i}{\pi} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right]
$$

Models with weights $k_{Q_i} = k_{U_i} = k_{D_i} = \{-2, 0, 2\}$ can fit data.

$$
y_q = \begin{pmatrix} 0 & 0 & c_{13}^q \\ 0 & c_{22}^q & \text{Im}\,\tau \begin{bmatrix} c_{23}^q Z_1^{(2)} + c_{23}^{'q} Z_2^{(2)} \end{bmatrix} & c_{31}^q Z_1^{(2)} + c_{32}^{'q} Z_2^{(2)} \end{pmatrix} \mathbf{I} \mathbf{m} \tau \begin{bmatrix} c_{23}^q Z_1^{(2)} + c_{23}^{'q} Z_2^{(2)} \end{bmatrix}
$$

Modular sub-groups $\Gamma(N)$

Compactifications $+$ orbifolds/branes give modular sub-groups at higher level N

$$
\Gamma(N) \equiv SL(2,\mathbb{Z}) \text{ subgroup with } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bmod N.
$$

allowing models with SM quarks and lower weights as 'motivated' by strings.

 $\Gamma(2)$ has two modular forms with weight $k = 2$. Models with weights $k_{Q_i} = k_{U_i} = k_{D_i} = \{-2, 0, 2\}$ can fit data.

 $\Gamma(3)$ has two modular forms with weight $k = 1$

$$
Z_1^{(1)} = \sqrt{2} \frac{\eta^3(3\tau)}{\eta(\tau)}, \qquad Z_2^{(1)} = \frac{\eta^3(3\tau)}{\eta(\tau)} + \frac{\eta^3(\tau/3)}{3\eta(\tau)}.
$$

Models with weights $k_{Q_i} = k_{U_i} = k_{D_i} = \{-1, 0, 1\}$ can fit data.

$$
y_q = \begin{pmatrix} 0 & 0 & c_{13}^q \\ 0 & c_{22}^q & \sqrt{\text{Im}\,\tau} \left[c_{23}^q Z_1^{(1)} + c_{32}^{\prime q} Z_2^{(1)} \right] \\ c_{31}^q & \sqrt{\text{Im}\,\tau} \left[c_{32}^q Z_1^{(1)} + c_{32}^{\prime q} Z_2^{(1)} \right] & \text{Im}\,\tau \left[c_{33}^q Z_1^{(2)} + c_{33}^{\prime q} Z_2^{(2)} + c_{33}^{\prime q} Z_3^{(2)} \right] \end{pmatrix}
$$

Non-abelian modular representations

Generation number can be embedded in $SL(2, \mathbb{Z})$ as multiplets of the finite group

$$
\Gamma_N \equiv \frac{\mathrm{SL}(2,\mathbb{Z})}{\Gamma(N)} \quad \text{with} \quad \Gamma_2 = S_3, \quad \Gamma_3 = T' \sim A_4.
$$

Used to explain large neutrino mixings. Heavy quarks needed to get small mixings.

 $N = 3$ could allow models with triplets and low weights ± 1

but generic non-minimal Kahler are needed to fit data.

Supergravity and superstrings

Strings etc motivate a Planckian τ decay constant $h = nM_{\rm Pl}$ with integer n. If $h \sim \bar{M}_{\rm Pl}$ supergravity predicts new effects:

- W acquires modular weight $k_W = h^2/\bar{M}_{\text{Pl}}^2 > 0$;
- The gluino phase rotates, so the modular anomaly becomes

$$
A = A_{\text{quark}} + A_{\text{gluino}} = \sum_{i=1}^{3} (2k_{Qi} + k_{U_i} + k_{D_i} - 2k_W) + 3k_W.
$$

- $A = 0$ again implies $\bar{\theta} \propto \arg M_3^3 \det M_q = 0$. But...
- Extra states needed to avoid massless quarks e.g. 8 of SU(3) with $k = -k_W$.

Could something similar happen in strings? Modular invariance is non-anomalous, but the QFT field content is. Strong CP problem solved if $A_{\text{quark}} = 0$?

Conclusions

Solution to the QCD $\bar{\theta} \ll \delta_{\rm CKM} \sim 1$ problem

Assume: CP is part of a local flavour symmetry, spontaneously broken by multiple scalars z_a in a theory where Y_q are proportional to positive powers of z_a but no z_a^{\dagger} (so, SUSY). Then det $Y_q \propto z^k$ is real selecting charges such that $k = 0$, as demanded by anomaly cancellation in simpler models.

- Without heavy quarks: unique Y_q structure.
- With heavy quarks: justifies and extends Nelson-Barr models.
- Can be realized with $U(1)$, up to complications.

Modular realization

Modular invariance $SL(2, \mathbb{Z})$ as flavour symmetry avoids complications.

- $N = 1$ is like two scalars E_4, E_6 , assume $k_{Q,U,D,L,E} = \{-6,0,6\},\$ q and ℓ masses and mixings reproduced up to order one coefficients.
- $N = 2$ allows $k_{Q,U,D,L,E} = \{-2,0,2\}$. Or as $2 \oplus 1$, adding heavy Q.
- $N = 3$ allows $k_{Q,U,D,L,E} = \{-1,0,1\}$. Or as 3, adding heavy Q?

Axions not needed, all can be heavy... how can this be tested confirmed?

Supergravity

The worst $\bar{\theta} \sim h^2 / \bar{M}_{\text{Pl}}^2$ would be acceptable, as $h \lesssim 10^{-5} \bar{M}_{\text{Pl}}$ is allowed. But strings etc motivate $h = n\bar{M}_{\text{Pl}}$. Supergravity gives new complicated effects:

 \bullet the Kähler potential K and the super-potential W unify in

$$
G=K/\bar{M}_{\rm Pl}^2+ \ln |W/\bar{M}_{\rm Pl}^3|^2;
$$

- $\bullet\,$ a modular transformation of τ implies a Kähler transformation: W acquires modular weight $k_W = h^2/\bar{M}_{\text{Pl}}^2 > 0$;
- a Kähler transformation implies an extra phase rotation of fermions (quarks and the gluino), so the modular anomaly becomes

$$
A = A_{\text{quark}} + A_{\text{gluino}} = \sum_{i=1}^{3} (2k_{Qi} + k_{U_i} + k_{D_i} - 2k_W) + 3k_W.
$$

• $A = 0$ again implies $\bar{\theta} \propto \arg M_3^3 \det M_q = 0$.

Supergravity

The worst $\bar{\theta} \sim h^2 / \bar{M}_{\text{Pl}}^2$ would be acceptable, as $h \lesssim 10^{-5} \bar{M}_{\text{Pl}}$ is allowed. But strings etc motivate $h = n\bar{M}_{\text{Pl}}$. Supergravity gives new complicated effects:

 \bullet the Kähler potential K and the super-potential W unify in

$$
G=K/\bar{M}_{\rm Pl}^2+ \ln |W/\bar{M}_{\rm Pl}^3|^2;
$$

- a modular transformation of τ implies a Kähler transformation: W acquires modular weight $k_W = h^2/\bar{M}_{\text{Pl}}^2 > 0$;
- a Kähler transformation implies an extra phase rotation of fermions (quarks and the gluino), so the modular anomaly becomes

$$
A = A_{\text{quark}} + A_{\text{gluino}} = \sum_{i=1}^{3} (2k_{Qi} + k_{U_i} + k_{D_i} - 2k_W) + 3k_W.
$$

• $A = 0$ again implies $\bar{\theta} \propto \arg M_3^3 \det M_q = 0$. But...

the gluino gets involved, does not mix with quarks, has $k_W > 0$. Some quark remains massless within the MSSM. Non-minimal models are needed.

E.g. an extra $\lambda' \in 8$ of SU(3) with modular charge opposite to the gluino resurrects the previously discussed models. Integrating λ' out gives EFT with anomalies and modular functions, that solve $\bar{\theta} = 0$ as discussed in the previous slide.

Superstrings

This suggests more general sugra models: assume

- 1. Full theory with non-anomalous modular invariance, $A = 0$;
- 2. Integrating out heavy states only gives poles at $\tau = i\infty$.
- 3. No modular anomaly from quarks, $\sum_{i=1}^{3} (2k_{Qi} + k_{U_i} + k_{D_i} 2k_W) = 0.$ $i=1$

The resulting effective sugra field theory:

- Allows negative powers of Dedekind $\eta(\tau) = [(E_4^3(\tau) E_6^2(\tau))/12^3]^{1/24}$ only.
- Extra phases e.g. $\eta \to e^{i\theta} (c\tau + d)^{1/2} \eta$ mess math without affecting physics.
- Modular anomaly cancelled by gauge kinetic function, $f \ni 3k_W \ln \eta/(4\pi^2)$.
- $\bar{\theta} = \theta_{\text{QCD}} + \arg M_3^3 \det M_q = 0$ as both depend on η .

This remembers you something stringy? Maybe the proposed understanding of the θ_{QCD} puzzle could be realized in toroidal string compactifications:

- 1.X Modular invariances of superstrings are non-anomalous; anomalies appears in the effective QFT of massless states.
- 2.√ Integrating out ∞ towers of states with mass $\alpha n + m\tau$ gives Dedekind η with de-compactification poles.

Superstrings

This suggests more general sugra models: assume

- 1. Full theory with non-anomalous modular invariance, $A = 0$;
- 2. Integrating out heavy states only gives poles at $\tau = i\infty$.
- 3. No modular anomaly from quarks, $\sum_{i=1}^{3} (2k_{Qi} + k_{U_i} + k_{D_i} 2k_W) = 0.$ $i=1$

The resulting effective sugra field theory:

- Allows negative powers of Dedekind $\eta(\tau) = [(E_4^3(\tau) E_6^2(\tau))/12^3]^{1/24}$ only.
- Extra phases e.g. $\eta \to e^{i\theta} (c\tau + d)^{1/2} \eta$ mess math without affecting physics.
- Modular anomaly cancelled by gauge kinetic function, $f \ni 3k_W \ln \eta/(4\pi^2)$.
- $\bar{\theta} = \theta_{\text{QCD}} + \arg M_3^3 \det M_q = 0$ as both depend on η .

This remembers you something stringy? Maybe the proposed understanding of the θ_{QCD} puzzle could be realized in toroidal string compactifications:

- 1.X Modular invariances of superstrings are non-anomalous; anomalies appears in the effective QFT of massless states.
- 2.√ Integrating out ∞ towers of states with mass $\alpha n + m\tau$ gives Dedekind η with de-compactification poles.
- 3.4 Anomaly-free EFT? We don't know if strings realise the MSSM... $\langle \tau \rangle$?