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Introduction

The strong CP problem

Data show LQCD =
∑
q

q̄(i /D −Mq)q −
1

4
Tr G2 + θQCD

g2
3

32π2
Tr GG̃ with

• large CP violation in quark mixing, δCKM ∼ 1;
• no CP violation in neutron dipole, θ̄ = θQCD + arg detMq <∼ 10−10

but both quark massesMq and δCKM originate from quark Yukawa couplings.

Solutions

• Axion. But: not observed so far; quality problem.
• P invariance broken by real 〈h〉 gives m = m†, but corrections, BSM.
• CP invariance broken by 〈za〉 and special Nelson-Barr mass matrices

Mq ∼
( qR QR

qL yv 0
QcR complex M

)
has real det, preserved with SUSY.



Getting θ̄ = 0
Assume that CP is a spontaneously broken flavour symmetry, quark mass matrices
are real constants c times powers ka of CP-breaking operators za but no z†a.
Toy example with one z and Ng = 2 generations:

Mq =

( qR1 qR2

qL1 c11z
k11 c12z

k12

qL2 c21z
k21 c22z

k22

)
.

detMq = c11c22 z
k11+k22 − c12c21 z

k12+k21 can be real for any c, z if the kij are
• ‘charges’ of a U(1) spontaneously broken by z, or
• ‘weights’ of a modular symmetry

such that kij = (kqLi + kqRj + kHq )/kz and

detMq = (c11c22 − c12c21)zk real if k =

Ng=2∑
i=1

(kqLi + kqRi + kHq ) = 0.

But only one ‘scalar’ z does not break CP, it can be U(1)-rotated to real. Physical
CP-breaking arises if U(1) is broken by multiple scalars za with different phases.

This works in the same way for multiple za and any Ng, even adding heavy quarks,
because det scales following the total charge k of its elements.



Getting θ̄ = 0 and δCKM 6= 0
Assume that the quark Yukawa matrices Y u and Y d have the general structure

Yij =
∑
α

cijαz
k1α
1 · · · zkNαN with real c and no z†

summed over the multiple integer solutions kaα ≥ 0 (needed to get δCKM 6= 0) to

kz1k1α + · · ·+ kzN kNα = kqLi + kqRj + kHq .

• detMq(λza) ∝ λk real for k =
∑
i(2kQi + kUi + kDi) + kHu + kHd = 0.

• δCKM 6= 0 can be obtained even assuming the Ng = 3 generations and no
heavy quarks. In such a case there is a unique structure

Y =

 0 0 c13

0 c22 Y23

c31 Y32 Y33

 , detY = c13c22c31.

For example realised with N = 2 scalars z+ and z++ with U(1) charge 1 and 2

Y =


−1 0 +1

−1 0 0 c13

0 0 c22 c23 z+

+1 c31 c32z+ c33 z
2
+ + c

′
33z++

.

For example realised with N = 2 scalars z4 and z6 with U(1) charge 4 and 6

Y =


−6 0 +6

−6 0 0 c13

0 0 c22 c23 z6

+6 c31 c32z6 c33 z
2
6 + c

′
33z

3
4

.
More choices. More structures (including Nelson-Barr) adding heavy quarks.
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Full QFT implementation

Must avoid z†a: justified assuming supersymmetry, possibly broken at high scale.

A global supersymmetric theory is described by
• the holomorphic super-potential

W = Y uij (za)UiQj Hu + Y dij(za)DiQj Hd + · · ·

where za are super-fields that break the flavour symmetry acting as

Qi → Λ−kQiQi, . . . za → Λkza za.

• the ‘Kahler’ kinetic term K can be general, as it does not contribute to θ̄.
• the gauge kinetic function f , real as we assume CP.
For example the minimal form is f = 1/g2 − θ/8π2 with θ = 0.



CP as a flavour symmetry
The flavour symmetry z can be
• Linearly realised: za are elementary scalars.

Λ(θ) depends on the group element θ. Example: a U(1) with Λ = eiθ.
• Non-linearly realised: Λ(θ, τ) depends on a special super-field τ → θ(τ).

Example: modular SL(2,Z) with τ → aτ + b

cτ + d
and Λ(θ, τ) ≡ cτ + d.

We assume that the flavour symmetry z is local to avoid Goldstones.

Then z must have no anomalies. The z · SU(3)2
c anomaly is

A =
∑
i

(2kQi + kUi + kDi) = 0.

Its cancellation coincides with solving the QCD θ̄ = 0 problem by imposing

k =
∑
i

(2kQi + kUi + kDi) + kHu + kHd = 0

if kHu + kHd = 0 meaning that the Higgs Hu,d do not break flavour z.

θ̄ = 0 understood if CP is an anomaly-free flavour symmetry not broken by Higgs.



Models with extra heavy quarks
In models with heavy quarks, for example QR ⊕QcR, the mass matrix becomes

M =

( qR QR

qL yv y′v
QcR µ M

)
.

Nelson-Barr assume y′ = 0, real y,M , complex µ. Realised assuming U(1) charges

M =

( 0 −1

0 yv 0
1 cz M

)
.

More general models have complex M,y′, y and an anomalous light field content.
In the full theory θ̄ = 0 as real detmlightMheavy. In the low-energy EFT θ̄ = 0 as
• complex detmlight cancels with
• anomalous gauge kinetic function fEFT = fUV − ln detMheavy/8π

2.
It’s the anomaly cancellation mechanism in string models with anomalous EFT.

Completing to a full theory needs: 1) a potential minimised by za with multiple
phases, not nice with U(1); 2) mediators that give kiα ≥ 0 only.

Better implementation with modular invariance. What’s that? It’s like a
motivated U(1) automatically broken in a predictive way by multiple scalars.



The string motivation
Modular invariance can be done as math independently from its string motivation.

Super-strings in 4 + 6 dimensions are real. Chiral families of fermions can arise
from compactifications on spaces with a complex structure. So CP can be a
geometric symmetry spontaneously broken by the compactification.
Literature focused on N = 1 supersymmetry, that needs a Ricci-flat compactifica-
tion with complex structure. Simplest geometry: compactification on orbi-folded
6d flat tori T 3. We only need a 2d flat torus T , obtained writing a 2d space as
z = x+iy and imposing a PacMan lattice identification z = z+ω1 and z = z+ω2:

τ = ω1/ω2 tells the geometry: Im τ is the relative radius, Re τ is the twisting.



Modular invariance
Modular invariance is a sub-group of discrete global reparametrizations, as(

ω1

ω2

)
→
(
a b
c d

)(
ω1

ω2

)
gives an equivalent lattice torus if a, b, c, d are integers with ad− bc = 1.
So the 4-dimensional EFT contains a modulus superfield τ invariant under SL(2, Z)

τ → aτ + b

cτ + d
.

1 0

0 1

τ

0 1

-1 0

S: τ  -1/τ

1 1

0 1

T: τ  τ + 1

Allows to restrict τ to its ‘fundamental domain’.

Unusual: appears integrating out infinite states, because of how strings experience
the geometry (e.g. R = 1/R). Matter fields Φ transform as phase and scaling

Φ→ (cτ + d)−kΦΦ with ‘weight’ kΦ.

The minimal global SUSY action with h� M̄Pl

K = −h2 ln(−iτ + iτ†) +
∑
Φ

Φ†e2V Φ

(−iτ + iτ†)kΦ
,

W = Y uij (τ)UiQj Hu + Y dij(τ)DiQj Hd

is modular invariant if Yukawa couplings transform with definite weights

Y qij(τ)→ (cτ + d)k
q
ijY qij(τ) kqij = kqRi + kqLj + kHq .
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Modular invariance and CP
The only modular functions of τ with weight k and no singularity (‘forms’) are
the Eisenstein series Ek, that transform nicely thanks to lattice summation

Ek(τ) ≡ 1

2ζ(k)

∑
(m,n)6=(0,0)

1

(m+ nτ)k
finite and non-vanishing for even k ≥ 4.

Weight k 0 1, 2, 3 4 6 8 10 12 · · ·
Forms 1 − E4 E6 E8 = E2

4 E10 = E4E6 E12 ∼ E3
4 + E2

6 · · ·

X E4 and E6 are like two scalars with charge 4 and 6.
X They have different phases:
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.
X The modulus τ breaks CP, as τ CP→ −τ†, Φ

CP→ Φ†.
X Forms forbid negative weight k < 0.
X Nicer than triangles.
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[Credits: Quanta]

https://d2r55xnwy6nx47.cloudfront.net/uploads/2023/03/UnboundedDenominators-byDavidLowryDuda-Lede.mp4


Recap: θ̄ = 0 from modular invariance
Assume:
• CP broken by modulus Re τ only.
• Supersymmetry, broken such that the gluino mass M3 is real.
E.g. gauge mediation. No weak-scale SUSY needed.

• Higgses don’t break modular invariance, kHu + kHd = 0.
Then:
• Y qij(τ) = cqij Fkqij

(τ) where c is real and Fk is a modular form with weight k.

• No anomalies, no QCD modular anomaly. E.g. with SM quarks only:

A =
3∑
i=1

(2kQi + kUi + kDi) = 0.

• detMq is a modular form with weight A = 0, so it’s a real constant, so

arg detMuMd = 0 θQCD = 0.

• δCKM ∝ Im det[Y †uYu, Y
†
d Yd] ∼ 1 has no special modular properties.

• Quark kinetic matrices Zq can be made canonical via a quark linear
transformation that affects q masses and mixing but not θ̄. Minimal Kähler:

Y qij |can = cqij(2Im τ)k
q
ij/2Fkqij

(τ).



The Minimal MSSM Model
Simplest model: modular weights kQ = kU = kD = (−6, 0,+6) so detYq is real:

Yq|can =


qL1 qL2 qL3

qR1 0 0 cq13

qR2 0 cq22 cq23(2Im τ)3E6(τ)
qR3 cq31 cq32(2Im τ)3E6(τ) (2Im τ)6

[
cq33E

3
4(τ) + c′

q
33E

2
6(τ)

]
.

Onion-like form: a numerical or approximate diagonalisation

y3 ' y33, y2 ' y22, y1 ' −
y13y31

y33
, θ23 '

y32

y33
, θ13 '

y31

y33
, θ12 '

y31y23

y22y33

shows that all quark masses and mixings can be reproduced with comparable c

cuij ≈ 10−3

 0 0 1.56
0 −1.86 0.87

1.29 4.14 3.51, 1.40

 cdij ≈ 10−3

 0 0 1.55
0 −2.59 4.59

0.378 0.710 0.734, 1.76


for tanβ = 10 and τ = 1/8 + i. No predictions. The quark hierarchies are repro-
duced somehow like in U(1)FN Froggatt-Nielsen, thanks to the modular ‘6’ e.g.
(2Im τ)6 = 64 for τ ∼ i. However, string constructions tend to use lower weights.

Leptons too assuming kL = kE = kQ:

ceij = 10−3

 0 0 1.29
0 5.95 0.35

−2.56 1.47 1.01, 1.32

 cνij =
1

1016 GeV

 0 0 3.4
0 7.1 1.2

3.4 1.2 0.19, 0.95

 .
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Modular sub-groups Γ(N)
Compactifications + orbifolds/branes give modular sub-groups at higher level N

Γ(N) ≡ SL(2,Z) subgroup with γ =

(
a b
c d

)
=

(
1 0
0 1

)
modN.

allowing models with SM quarks and lower weights as ‘motivated’ by strings.
Γ(2) has two modular forms with weight k = 2.

Z
(2)
1 =

2i

π

[
η′(τ/2)

η(τ/2)
+
η′((τ + 1)/2)

η((τ + 1)/2)
− 8

η′(2τ)

η(2τ)

]
, Z

(2)
2 =

2
√
3i

π

[
η′(τ/2)

η(τ/2)
−
η′((τ + 1)/2)

η((τ + 1)/2)

]
Models with weights kQi = kUi = kDi = {−2, 0, 2} can fit data.

yq =


0 0 cq13

0 cq22 Im τ
[
cq23Z

(2)
1 + c′q23Z

(2)
2

]
cq31 Im τ

[
cq32Z

(2)
1 + c′q32Z

(2)
2

]
(Im τ)2

[
cq33Z

(4)
1 + c′q33Z

(4)
2 + c′′q33Z

(4)
3

]


Γ(3) has two modular forms with weight k = 1

Z
(1)
1 =

√
2
η3(3τ)

η(τ)
, Z

(1)
2 =

η3(3τ)

η(τ)
+
η3(τ/3)

3 η(τ)
.

Models with weights kQi = kUi = kDi = {−1, 0, 1} can fit data.

yq =


0 0 cq13

0 cq22

√
Im τ

[
cq23Z

(1)
1 + c′q23Z

(1)
2

]
cq31

√
Im τ

[
cq32Z

(1)
1 + c′q32Z

(1)
2

]
Im τ

[
cq33Z

(2)
1 + c′q33Z

(2)
2 + c′′q33Z

(2)
3

]
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Non-abelian modular representations
Generation number can be embedded in SL(2,Z) as multiplets of the finite group

ΓN ≡
SL(2,Z)

Γ(N)
with Γ2 = S3, Γ3 = T ′ ∼ A4.

Used to explain large neutrino mixings. Heavy quarks needed to get small mixings.

N = 2 allows models with doublets and low weights ±2:

SM quarks Extra vector-like quarks
Q D U D′ D′c U ′ U ′c

Flavour Γ2 2⊕ 10 2⊕ 11 2⊕ 10 2⊕ 10 2⊕ 11 2⊕ 10 2⊕ 10

Weights k −2 −2 −2 +2 +2 +2 +2

N = 3 could allow models with triplets and low weights ±1

SM quarks Extra vector-like quarks
Q D U D′ D′c U ′ U ′c

Flavour Γ3 3 3 3 3 3 3 3
Weights k −1 ±1 ±1 +1 ∓1 +1 ∓1

but generic non-minimal Kahler are needed to fit data.



Supergravity and superstrings

Strings etc motivate a Planckian τ decay constant h = nM̄Pl with integer n.

If h ∼ M̄Pl supergravity predicts new effects:
• W acquires modular weight kW = h2/M̄2

Pl > 0;
• The gluino phase rotates, so the modular anomaly becomes

A = Aquark +Agluino =

3∑
i=1

(2kQi + kUi + kDi − 2kW ) + 3kW .

• A = 0 again implies θ̄ ∝ argM3
3 detMq = 0. But...

• Extra states needed to avoid massless quarks e.g. 8 of SU(3) with k = −kW .

Could something similar happen in strings? Modular invariance is non-anomalous,
but the QFT field content is. Strong CP problem solved if Aquark = 0?



Conclusions
Solution to the QCD θ̄ � δCKM ∼ 1 problem

Assume: CP is part of a local flavour symmetry, spontaneously broken by
multiple scalars za in a theory where Yq are proportional to positive powers
of za but no z†a (so, SUSY). Then detYq ∝ zk is real selecting charges such
that k = 0, as demanded by anomaly cancellation in simpler models.
• Without heavy quarks: unique Yq structure.
• With heavy quarks: justifies and extends Nelson-Barr models.
• Can be realized with U(1), up to complications.

Modular realization

Modular invariance SL(2,Z) as flavour symmetry avoids complications.

• N = 1 is like two scalars E4, E6, assume kQ,U,D,L,E = {−6, 0, 6},
q and ` masses and mixings reproduced up to order one coefficients.

• N = 2 allows kQ,U,D,L,E = {−2, 0, 2}. Or as 2⊕ 1, adding heavy Q.
• N = 3 allows kQ,U,D,L,E = {−1, 0, 1}. Or as 3, adding heavy Q?

Axions not needed, all can be heavy... how can this be tested confirmed?
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Supergravity
The worst θ̄ ∼ h2/M̄2

Pl would be acceptable, as h<∼ 10−5M̄Pl is allowed.
But strings etc motivate h = nM̄Pl. Supergravity gives new complicated effects:
• the Kähler potential K and the super-potential W unify in

G = K/M̄2
Pl + ln |W/M̄3

Pl|2;

• a modular transformation of τ implies a Kähler transformation:
W acquires modular weight kW = h2/M̄2

Pl > 0;
• a Kähler transformation implies an extra phase rotation of fermions (quarks
and the gluino), so the modular anomaly becomes

A = Aquark +Agluino =
3∑
i=1

(2kQi + kUi + kDi − 2kW ) + 3kW .

• A = 0 again implies θ̄ ∝ argM3
3 detMq = 0.

But...
the gluino gets involved, does not mix with quarks, has kW > 0. Some quark
remains massless within the MSSM. Non-minimal models are needed.
E.g. an extra λ′ ∈ 8 of SU(3) with modular charge opposite to the gluino resurrects
the previously discussed models. Integrating λ′ out gives EFT with anomalies and
modular functions, that solve θ̄ = 0 as discussed in the previous slide.
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Superstrings
This suggests more general sugra models: assume
1. Full theory with non-anomalous modular invariance, A = 0;
2. Integrating out heavy states only gives poles at τ = i∞.

3. No modular anomaly from quarks,
3∑
i=1

(2kQi + kUi + kDi − 2kW ) = 0.

The resulting effective sugra field theory:
• Allows negative powers of Dedekind η(τ) = [(E3

4(τ)− E2
6(τ))/123]1/24 only.

• Extra phases e.g. η → eiθ(cτ + d)1/2η mess math without affecting physics.
• Modular anomaly cancelled by gauge kinetic function, f 3 3kW ln η/(4π2).
• θ̄ = θQCD + argM3

3 detMq = 0 as both depend on η.

This remembers you something stringy? Maybe the proposed understanding of
the θQCD puzzle could be realized in toroidal string compactifications:
1.X Modular invariances of superstrings are non-anomalous; anomalies appears

in the effective QFT of massless states.
2.X Integrating out ∞ towers of states with mass ∝ n+mτ gives Dedekind η

with de-compactification poles.

3.X— Anomaly-free EFT? We don’t know if strings realise the MSSM... 〈τ〉?
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