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Gravitational Waves

In the theory of general relativity, gravitational 
waves (GWs) were first predicted in 1916 by 
Albert Einstein, as ripples in spacetime                                                     



First Indirect Evidence (1974) + First Direct Evidence (2015)
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(Physics, 2017)

GW150914

[B.P. Abbott et. al., 

PRL 116, 061102 (2016)]

Weiss ThorneBarish
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Hulse-Taylor binary pulsar

[J. Taylor, 2005]

(Physics, 1993)Hulse Tylor
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Detection of  GWs - A General View

Credit: www
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Sources for HFGWs - 1st Order Cosmological Phase Transition

[For a review, see, e.g., 

N. Aggarwal et. al., Living Rev.Rel. 24 (2021)]
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Credit: www

https://inspirehep.net/authors/1942282
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Sources for HFGWs - Light PBH/Compact Star Mergers 

[For a review, see, e.g., 

N. Aggarwal et. al., Living Rev.Rel. 24 (2021)]

Credit: www

https://inspirehep.net/authors/1942282
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Sources for HFGWs - Axion Cloud (Annihilation and Decay)

[Yang and Huang, 2306.12375]

[For a review, see, e.g., 

N. Aggarwal et. al., Living Rev.Rel. 24 (2021)]
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Beam Detectors - Weak at High Frequencies

[J. Romano and N. Cornish, 

Living Rev.Rel. 20 (2017)]

Interferometer Pulsar timing 

Suppressed at 
high-frequency

Detector characteristic size 
influences phase difference 8
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Inverse Gertsenshtein Effect (Gertsenshtein, 1962)
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Encodes the GW-photon mixing

Photon diagonal mass

       

                    

(Vacuum effect) (Plasma effect)

In an external magnetic field, the 
GWs could be converted into 

electromagnetic waves or 
photons with the same frequency.
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Inverse Gertsenshtein Effect (Gertsenshtein, 1962)
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General magnetic field

[Raffelt and Stodolsky, Phys.Rev.D 37 (1988)]

Coherence conversion: 
sinc -> 1 or large l_osc

L: characteristic travel distance 
of GWs in the magnetic field

GW-photon oscillation length

losc = 2/(4�2
M +�2

�)
1/2

Homogeneous magnetic field

Determined by the 
profile of exp setup

[Mirizzi and Montanino, 
JCAP 12, 004 (2009); 
Kartavtsev, et. al., JCAP 
01, 024 (2017)]



Sensitivity Analysis
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Angular distribution of GW-converted photons is encoded in P (Ω’) 

Photons falling into the detector FOV (∆Ω ) will contribute to Φγ



Two Representative Cases in Astronomy

Neutron Star Earth

Surface magnetic field 
(SMF)

Extremely strong

~ 10^8 - 10^15 Gauss 

Very weak

~ 0.5 Gauss 

Plasma density Goldreich-Julian model Barometric model

Plasma density

(analytical formula)

Distance Distant 

~ O(100-1000) parsecs Nearby  
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Magnetosphere Conversion - Neutron Star 
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Magnetosphere Conversion - Neutron Star 

 Strong magnetic field => large                    


 Overall enhancement for the factor of conversion probability: 


 Difficult to achieve coherent conversion [Raffelt and Stodolsky, Phys.Rev.D 37 (1988)]


 G-J model => Even worse for low-frequency regime (suppressed losc in the magnetosphere): 


 Distant => Angular distribution of signal photon flux is extremely narrow 
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Magnetosphere Conversion - Earth
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Magnetosphere Conversion - Earth

 Weak magnetic field => small                    


 Despite of smallness of                 , coherent conversion is easy to achieve


 Barometric model => nc  suppresses losc significantly only for low frequency and at low altitude


 Nearby => Wide angular distribution of signal photon flux (subject to technology constraints for FOV) 
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Electromagnetic Telescopes - New Scientific Values
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Low-Orbit Satellite with a Birdview in Earth’s Dark Side
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Main Backgrounds
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Albedo reflection of cosmic photons Atmospheric thermal emission

[NASA]

[Hill et. al., Appl.Spectrosc. 72 (2018)]
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Two Benchmark Scenarios

[F. Förster, et. al., 

Astron.J. 161 (2021)]

 Detect isotropic stochastic background of HFGWs


 Conservative scenario: follow the etendue profile 
of existing missions


 Optimistic scenario: follow the etendue profile of 
future telescopes

SUZAKU-like

SAFIR 2-like

Nimbus Hubble Voyager Fermi-LATSUZAKU
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Based on the 
M7 X-ray dim 
isolated NSs

Sensitivities Demonstration 
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Outlook I
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The Jupiter Magnetic Field

Outlook II - Other Nearby Astronomical Systems

The Sun Magnetic Field

Jupiter: radius ~ 70,000 km and SMF ~ 10 Gauss; nearby
Sun: radius ~ 700,000 km and SMF ~ O(1) Gauss; nearby
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 Take-home Messages

The detection of HFGWs represents a task in GW astronomy with extremely high scientific significance 


For this task, efficient detection methodologies are strongly demanded


With long GW-photon conversion path and wide angular distribution of signal fluxes, the proposal of detecting 
HFGWs in planetary magnetosphere opens a new operation space, with encouraging sensitivities projected for 
a wide coverage of frequencies.                
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EM wave spectrum

GW spectrum                 

Frequency

           (Hz)

Radio     Microwave Infrared   visible        Ultraviolet        X-ray    Gamma-ray    
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Thank you!
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