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DETECTING HIGH-FREQUENCY GWS IN PLANETARY MAGNETOSPHERE

Tao Liu
Hong Kong University of Science and Technology
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Gravitational Waves
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In the theory of general relativity, gravitational
waves (GWs) were first predicted in 1916 by

Albert Einstein, as ripples in spacetime




First Indirect Evidence (1974) + First Direct Evidence (2015)
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- A General View

Detection of GWs
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lT'B Sources for HFGWs - Light PBH/Compact Star Mergers
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W Sources for HFGWs Axuon Cloud (Annlhllatlon and Decay)
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Interferometer

Beam Detectors - Weak at High Frequencies
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lT'B Inverse Gertsenshtein Effect (Gertsenshtein, 1962)
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Afy AM An = %nBt Encodes the GW-photon mixing
AM 0 A'y ~ Avac + Apla Photon diagonal mass

A a — 2 2
AVa(: — 70[&)/(9071') (Bt/Bc)2 pl mplil/( (.d)

(Vacuum effect) (Plasma effect)

In an external magnetic field, the
GW:s could be converted into
electromagnetic waves or

photons with the same frequency.

(e)
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m Inverse Gertsenshtein Effect (Gertsenshtein, 1962)
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JCAP 12, 004 (2009);
General magnetic field Homogeneous magnetic field Kartavtsev, et. al., JCAP

01, 024 (2017)]

L

[Raffelt and Stodolsky, Phys.Rev.D 37 (1988)] P = sin*(20) sin” (

o L: characteristic travel distance

A ¢ . .
: of GWs in the magnetic field
P = /E df An(£)exp (—z/@ dv’ Ay(é’)) , J 2\1/2 Determined by the = Coherence conversion:
“ . lose = 2/ (443, + A%) profile of exp setup  sinc -> 1 or large |_osc

GW-photon oscillation length
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© Angular distribution of GW-converted photons is encoded in P (Q)')

- Photons falling into the detector FOV (AQ ) will contribute to ®y ~ Mot chidd
Height
h2
~ A~ C
s ~ PLAAL~ = (P)get A AtAWAS, .

b ~ B,AAL~ dyAALAWAQ,

Camera
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Two Representative Cases in Astronomy

Neutron Star

Surface magnetic field Extremely strong Very weak

(SMF) ~ 1078 - 105 Gauss ~ 0.5 Gauss

Plasma density Goldreich-Julian model Barometric model

Plasma density n, = 242-B 1 HnE 0 eXp (_ § 7’0)
)  O2m2 a2 & et Gy

(analytical formula) e 1—0O2r2gin“d Hcor
. Distant
Distance ~ 0(100-1000) parsecs Nearby




Magnetosphere Conversion - Neutron Star
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PHYSICAL REVIEW D VOLUME 37, NUMBER 5 1 MARCH 1988

Mixing of the photon with low-mass particles

Georg Raffelt
Astronomy Department, University of California, Berkeley, California 94720
and Institute for Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, California 94550

Leo Stodolsky
Max-Planck-Institut fur Physik und Astrophysik, Postfach 401212, 8000 Miinchen 40,
Federal Republic of Germany
(Received 21 August 1987)

Photons can mix with low-mass bosons in the presence of external electromagnetic fields if these

particles—not necessarily of spin 1—couple by a two-photon vertex. Important examples are the
hypothetical axion (spin 0) and graviton (spin 2). We develop a formalism which is adapted to study

the evolution of a photon (axion, graviton) beam in the presence of external fields. We apply our re-
sults to discuss the possibility of detecting axions by a measurement of the magnetically induced
birefringence of the vacuum. We also discuss photon-axion (graviton) transitions in pulsar magnetic
fields. The QED-induced nonlinearity of Maxwell’s equations causes magnetic birefringence effects
which are much stronger than the axion-induced effects in the range of axion parameters allowed by
astrophysical constraints. Also, this QED effect induces an index of refraction for photons in vacu-
um which is so large near pulsars that photon-axion (graviton) transitions are strongly suppressed.
However, this QED effect can be canceled by plasma refractive effects, leading to degeneracy be-
tween photons and axions so that resonant transitions can occur in analogy with the Mikheyev-
Smirnov-Wolfenstein effect. The adiabatic condition can be met only in spatially extended systems,
possibly in the magnetosphere of magnetic white dwarfs. Our conclusions differ substantially from
several recent discussions of various aspects of these mixing phenomena.




Magnetosphere Conversion - Neutron Star
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- Strong magnetic field => large A,; x B
- Overall enhancement for the factor of conversion probability: (Aj;L)?

- Difficult to achieve coherent conversion [Raffelt and Stodolsky, Bhys.Rev.D 37 (1988)]
m
pla Uz

losc = 2/ (4% A%)l/2 Apla = X —

2W W
- G-J model => Even worse for low-frequency regime (suppressed losc In the magnetosphere):

© Distant => Angular distribution of signal photon flux is extremely narrow




nversion - Earth

PHYSICAL REVIEW LETTERS 132, 131402 (2024)

Limits on High-Frequency Gravitational Waves in Planetary Magnetospheres

Tao Liu®,"” Jing Ren®,>" and Chen Zhang®"*
lDeparltment of Physics and Jockey Club Institute for Advanced Study, The Hong Kong University of Science
and Technology, Hong Kong S.A.R., People’s Republic of China
*Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

® (Received 28 June 2023; revised 9 December 2023; accepted 29 January 2024; published 28 March 2024)

High-frequency gravitational waves (HFGWs) carry a wealth of information on the early Universe with a
tiny comoving horizon and astronomical objects of small scale but with dense energy. We demonstrate that
the nearby planets, such as Earth and Jupiter, can be utilized as a laboratory for detecting the HFGWs.
These GWs are then expected to convert to signal photons in the planetary magnetosphere, across the
frequency band of astronomical observation. As a proof of concept, we present the first limits from the
existing low-Earth-orbit satellite for specific frequency bands and project the sensitivities for the future
more-dedicated detections. The first limits from Juno, the latest mission orbiting Jupiter, are also presented.
Attributed to the long path of effective GW-photon conversion and the wide angular distribution of signal
flux, we find that these limits are highly encouraging, for a broad frequency range including a large portion
unexplorebelore: > @ s s s B D D D

DOI: 10.1103/PhysRevLett.132.131402
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Magnetosphere Conversion - Earth
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hc’95% ~ 4.5k (

- Weak magnetic field => small A); «x B

- Despite of smallness of (A,,L)? , coherent conversion is easy to achieve

9
m
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© Barometric model => nc suppresses losc significantly only for low frequency and at low altitude

© Nearby => Wide angular distribution of signal photon flux (subject to technology constraints for FOV)




Electromagnetic Telescopes - New Scientific Values

gamma ray

AW

ultraviolet visible iInfrared  microwave

EM wave spectrum

Radio Microwave Infrared visible Ultraviolet X-ray Gamma-ray

#1# Frequency
(Hz)

104 108 10

10" 10 108 10%°
GW spectrum J J J
Y 4 » ?? Frequency

e > o) [

radio

10-16 1014 1012 10-1© 10 106 104 102 10° 102 t\‘{?}‘} d.‘si@%}&?}

(CMB) (PTA) (LISA)  (LIGO) .




Low-0Orbit Satellite with a Birdview in Earth’s Dark Side
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o Detect isotropic stochastic background of HFGWs

~ Conservative scenario: follow the etendue profile
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Outlook Il - Other Nearby Astronomical Systems

Callisto -

- Jupiter: radius ~ 70,000 km and SMF ~ 10 Gauss; nearby
> Sun: radius ~ 700,000 km and SMF ~ O(1) Gauss; nearby
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Take-home Messages
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EM wave spectrum
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~  The detection of HFGWs represents a task in GW astronomy with extremely high scientific significance
© For this task, efficient detection methodologies are strongly demanded

- With long GW-photon conversion path and wide angular distribution of signal fluxes, the proposal of detecting

HFGWs in planetary magnetosphere opens a new operation space, with encouraging sensitivities projected for
a wide coverage of frequencies.




ARmpg=.

1l

Explore content v  About the journal v  Publish with us v Subscribe

nature > nature astronomy > research highlights > article

|||05| IVUIV 1] \.«LIUUI l\v] Udliuuo UoLVuU 1VI daouvl v

nomical observation. The presented limits
Research Highlight | Published: 21 May 2024 lay a foundation for future studies into novel
GW detection technologies, potentially

Gravitational waves
. . . « o capable of identifying signatures of inflation
Planet-sized laboratories offer cosmological insights and cosmological phase transitionsinthe

very early Universe, as well as tuningin to

violent small-scale astronomical events such
as the merging of primordial black holes and
intercommutation of cosmic strings.

Morgan Hollis &

Nature Astronomy 8, 549 (2024) | Cite this article

196 Accesses \ 63 Altmetric | Metrics

Morgan Hollis

Nature Astronomy

The Laser Interferometer Space Antenna (LISA) mission is scheduled to be humanity’s first -
Original reference: Phys. Rev. Lett. 12, 131402 (2024)

space-based gravitational wave (GW) detector when launched in the mid-2030s. In an

intriguing proof-of-concept study, Tao Liu, Jing Ren and Chen Zhang suggest a novel method
of using planetary magnetospheres as detectors for high-frequency gravitational waves

(HFGWs), utilizing space-based instrumentation that is already technologically feasible or
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