Robustness of the Galactic Center Excess Morphology Against Masking

Yi-Ming Zhong

City University of Hong Kong

w/I. Cholis, S. D. McDermott, J. Surdutovich [arXiv: 2112.09706, 2209.00006v3, **2401.02481**]

New Opportunities for Particle Physics 2024, 21 July 2024

Outline

- Introduction
- The template fitting
- The characteristics of the GCE with a set of new templates
- Robustness of the Galactic Center Excess (GCE) morphology against masking
- Summary

What is dark matter?

Yi-Ming Zhong (CityU HK)

Credit: Snowmass report

What is dark matter?

Yi-Ming Zhong (CityU HK)

Credit: Snowmass report

The Fermi Large Area Telescope

2008-today

Yi-Ming Zhong (CityU HK)

Yi-Ming Zhong (CityU HK)

The Galactic Center Excess

- Goodenough & Hooper (2009) found an excess of yray photos, peaked around 1-4 GeV, at inner ~10° regions.
- Later confirmed by Fermi-LAT collaboration and many other groups.

y-ray energy spectrum

If GCE comes from dark matter...

- Evidence for dark matter interacts with the ordinary matter.
- We could learn both dark matter mass and the interaction strength (WIMP particle).
- We could naturally explain the abundance of dark matter ("WIMP Miracle").

m_x ~10-100 GeV $\langle \sigma v \rangle \sim 10^{-26} \, \mathrm{cm}^3/\mathrm{s}$

Other explanation — pulsars

- Pulsars are rapidly spinning neutron stars.
- Among pulsars, millisecond pulsars give the correct spectra of the GCE.
- Although we have not yet observed any millisecond pulsar at the Galactic center, the GCE could be from a population of faint millisecond pulsars there.

What is the origin of the GCE?

Dark matter annihilation

Yi-Ming Zhong (CityU HK)

A new population of millisecond pulsars

Looking at the small-scale power

Smooth

Yi-Ming Zhong (CityU HK)

Looking at the morphism

Spherical

Yi-Ming Zhong (CityU HK)

Boxy

The GCE status 2016-2018

Small-Scale Power

Non-Poissonian Template Fitting: Lee+ '16

Yi-Ming Zhong (CityU HK)

The GCE status 2016 - 2018

Small-Scale Power

Non-Poissonian Template Fitting: Lee+ '16 Wavelet: Bartels+ '16

Yi-Ming Zhong (CityU HK)

The GCE status 2016 - 2018

Morphism

Yi-Ming Zhong (CityU HK)

- Non-Poissonian Template Fitting: Lee+ '16
 - Wavelet: Bartels+ '16
- Boxy Bulge: Macias+ '16, '17, Bartels+ '17, Macias+'18

The GCE status after 2019

Yi-Ming Zhong (CityU HK)

Wavelet: Bartels+ '16

Boxy Bulge: Macias+ '16, '17, Bartels+ '17, Macias+'18

Leane & Slatyer '19, '20, '20, Chang+ '19, Buschmann+ '20,...

The GCE status after 2019

Yi-Ming Zhong (CityU HK)

YZ, McDermott, Cholis & Fox **'**20

Boxy Bulge: Macias+ '16, '17, Bartels+ '17, Macias+ '18

The debate on the morphism

Spherical Shape: Di Mauro '20, Cholis, YZ, McDermott & Surdutovich '21, McDermott, YZ, Ilias '22

Yi-Ming Zhong (CityU HK)

Boxy Bulge: Macias+ '18, '19, Pohl+ '20 Song+ '24

Template fitting

Fermi data

Template fitting

Yi-Ming Zhong (CityU HK)

GCE spectrum

Yi-Ming Zhong (CityU HK)

Weighted sum over all background & GCE templates

Templates

Isotropic diffuse background

Yi-Ming Zhong (CityU HK)

Take one energy bin as an example *

Fermi data

Removing point source regions

Masking

Removing the Galactic disk region

Yi-Ming Zhong (CityU HK)

Fiting

- We split the Fermi data in 14 energy bins.
- We then perform the masking & fitting energy bin-by-energy bin.
- For each energy bin, we run Markov chain Monte Carlo to get the statistics of the *weights* of the templates.

Yi-Ming Zhong (CityU HK)

Testing GCE models

Which model has the best test statistics?

Yi-Ming Zhong (CityU HK)

The characteristics of the GCE with a set of new templates

Yi-Ming Zhong (CityU HK)

Modeling the diffused y-ray emission

- Two steps:
 - 1. Propagation of the cosmic ray (CR)
 - 2. y-ray produced from the cosmic rays interacting w/ interstellar medium (ISM)
- Need to control systematic uncertainties well. Observations of CR could help.

CR observation

AMS-02

CR hydrogen (H), helium (He), carbon (C), beryllium (Be), boron (B), and oxygen (O) near earth.

Yi-Ming Zhong (CityU HK)

Voyager 1

CR proton outside the Heliosphere.

New templates calibrated w/ CR data

Available at https://zenodo.org/record/5787376

Yi-Ming Zhong (CityU HK)

New templates calibrated w/ CR data

A diversity of templates

Model VI vs Model I

Model X vs Model I

Yi-Ming Zhong (CityU HK)

Model XV vs Model I

Model III vs Model I

Template fitting

Yi-Ming Zhong (CityU HK)

Fermi data [**12.5 years of obs.**] masking 4FGL-DR2 sources + disk [white regions]

The GCE is still there

Yi-Ming Zhong (CityU HK)

The GCE from all 80 diffuse background models 10^{-6} 5 best fit models 10^{-7} 2σ fit range for the 5 best fit models 5 worst fit models other 70 models 10^{-8}

10

E (GeV) Cholis, YZ, McDermott, Surdutovich (2022) PRD

Translated regions-of-interest

The residue across the sky

Yi-Ming Zhong (CityU HK)

X: *E* Y: $E^2 d\Phi/dE$

****GCE is unique: brighter & harder****

Yi-Ming Zhong (CityU HK)

On the morphism of GCE

Yi-Ming Zhong (CityU HK)

Preference Statistical

Prefers a round shape

On the cuspiness of GCE

Yi-Ming Zhong (CityU HK)

Prefer slightly contracted density profile

On the ellipticity of GCE

Yi-Ming Zhong (CityU HK)

 $\cos(\psi) = \cos(b)\cos(\ell/\epsilon)$

Opening angle from GC

Latitude

Longitude/e

Approximately spherical Prefer slightly oblate shape

Preference Statistical

Robustness of the Galactic Center Excess morphology against masking

Q1: Why is the GCE oblate?

Oblate

Yi-Ming Zhong (CityU HK)

Baryonic contraction

Simulation from Grand & White '22

Masking bias?

Q1: Why is the GCE oblate?

Q2: Are the GCE properties robust against masks?

Yi-Ming Zhong (CityU HK)

3FGL (2015) 4FGLDR1 (2019) 4FGLDR2 (2020) 4FGLDR3 (2022)

2FGL (2011)

Yi-Ming Zhong (CityU HK)

New masks

Smaller pt source mask

Shorter disk mask

Yi-Ming Zhong (CityU HK)

Standard mask

Larger pt source mask

No disk mask; use wavelet peaks instead

Masked pixel fraction for different masks

Yi-Ming Zhong (CityU HK)

Fraction

Pixel

Masked

The ellipticity of the GCE is robust

- The ellipticity of the GCE prefers a value of ϵ between 1.0 to 1.4.
- The result, obtained with the masking of 4FGLDR3 sources, is consistent with our previous findings where 4FGLDR2 sources were masked.

The ellipticity of the GCE is robust

Large 4FGLDR3 + Disk

Yi-Ming Zhong (CityU HK)

The ellipticity of the GCE is robust

Small 4FGLDR3 + Disk

Yi-Ming Zhong (CityU HK)

The cuspiness of the GCE is robust

- The cuspiness of the GCE prefers a value of $\gamma = 1.2$.
- Consistent with our earlier results.

Yi-Ming Zhong (CityU HK)

The cuspiness of the GCE is robust

Large 4FGLDR3 + Disk

Yi-Ming Zhong (CityU HK)

The cuspiness of the GCE is robust

Small 4FGLDR3 + Disk

Yi-Ming Zhong (CityU HK)

Q3: A new stellar bulge?

Yi-Ming Zhong (CityU HK)

A new bulge profile from Coleman+ '20. It is based on the red clump stars from the VVV survey

Coleman Bulge

Testing more GCE models

Dark matter annihilation

Boxy Bulge + Boxy Bulge Nuclear Bulge

Yi-Ming Zhong (CityU HK)

Coleman Bulge F98 X-shaped Bulge

Coleman bulge or dark matter annihilation?

- Preference ranking:
 - For some best-fit background models:
- Coleman Bulge > Dark matter annihilation
 - For other best-fit background models:
- Dark matter annihilation > Coleman Bulge

The shape of the GCE are robust

Large 4FGLDR3 + Disk

Yi-Ming Zhong (CityU HK)

Standard 4FGLDR3 + Disk

8000 8000 Model I Model XV Model XLVII 6000 6000 Model XLIX Model LII $2\Delta \ln(\mathcal{L})$ 4000 4000 2000 2000 0 0 Boxy Bulge BB+NB NFW $\gamma = 1.2$ NFW $\gamma = 1.2$ Coleman F98 X-shaped & Col. Bulge Bulge Bulge Bulge Profile

The shape of the GCE are robust

Small 4FGLDR3 + Disk

Yi-Ming Zhong (CityU HK)

Two components?

- Almost for all the models, Dark matter annihilation & Coleman Bulge > Dark matter annihilation or Coleman Bulge only.
- We should expect some MSPs contribution for GCE and should look into the spectra for the two components of "Dark matter annihilation + Coleman Bulge".

he spectrum

****Do not represent MSPs' spectrum**** Dark matter annihilation dominates GCE Coleman Bulge dominates GCE

Yi-Ming Zhong (CityU HK)

****The unexpected dip of the isotropic spectrum****

Summary

- with its nature still under active debate.
- point sources.
- dependent on the background model and requires further study.

The GCE is one of the most intriguing discoveries from the Fermi telescope.

• The characteristics of the GCE remain consistent despite changes in the masking areas, especially with the expansion due to the inclusion of new

• The morphology of the GCE, in relation to millisecond pulsars (MSPs), is

Backup

Current status for WIMP

- No γ-ray excess observed in dwarf galaxies [tension w/ GCE is dominated by J-factor uncertainties].
- The parameter space still exists

Cholis+, '20

More mathematically speaking

$C = c_{\text{gas}} \Phi_{\text{Pi0}} + c_{\text{ICS}} \Phi_{\text{ICS}} + \dots + c_{\text{GCE}} \Phi_{\text{GCE}}$ Weighted sum of templates

D = Fermi Data

What are the weights maximize the log-likelihood?

Weighted sum of templates

Yi-Ming Zhong (CityU HK)

 $\ln \mathcal{L} = \sum \ln \left(\frac{C^D e^{-C}}{D!} \right) - \frac{1}{2} \chi_{\text{ext}}^2$ ė Fermi data

Energy-dependence of the ellipticity

- For energies > 3 GeV, the GCE shows approximate sphericity across best-fit background models.
- The property remains robust across various masks.

Yi-Ming Zhong (CityU HK)

McDermott et al., arXiv:2209.00006v3

Excess Model	Bgd. Templates $ -2\Delta \ln A $	$\mathcal{L} \Delta \ln \mathcal{B} $	Baseline Model	Additional source	$-2\ln \mathcal{L}$	TS	$\ln \mathcal{H}$
No Excess	ring-based [23] 0	0	ring-based	none	3750994	0	-1876462
X-Shaped Bulge	ring-based [23] $ -16$	-115	ring-based	BB (gcepy)	3750592	402	-1876297
Dark Matter	ring-based $[23]$ -542	+251	ring-based	F98	3750570	424	-1876302
Boxy & X-Shaped Bulges	ring-based [23] -350	+119	ring-based	Cao13	3750560	434	-1876276
Boxy Bulge	ring-based [23] -414	+142	ring-based	gNFW ²	3750433	561	-1876232
Boxy Bulge "plus"	ring-based [23] -466	+156	ring-based	Coleman20	3750333	661	-1876144
Boxy Bulge "plus" & DM	ring-based [23] -734	+351					
No Excess	astrophysical [15] +1805	-50	GALPROP _{7p}	none	3752798	0	-1876678
Boxy Bulge	astrophysical [15] -53	+835	GALPROP _{8t}	BB (gcepy)	3750941	1857	-1875793
Boxy Bulge "plus"	astrophysical $[15] - 132$	+875	GALPROP _{8t}	gNFW ²	3750051	2747	-1875340
Dark Matter	astrophysical [15] -943	+1290	GALPROP _{8t}	Cao13	3750582	2216	-1875613
Boxy Bulge "plus" & DM	astrophysical [15] -1056	+1320	GALPROP _{8t}	F98	3749924	2874	-1875286
		1	GALPROP _{8t}	Coleman20	3749563	3235	-1875108

Yi-Ming Zhong (CityU HK)

Song et al., arXiv:2402.05449v1

Excess Model	Bgd. Templates	-2Δ In L (McDermott et al)	-2Δ In L (Song et al)	Δ In B (McDermott et al)	Δ In B (Song et al)
No Excess	Ring-based	0	0	0	0
Dark Matter	Ring-based	-542	-561	+251	+230
Boxy Bulge	Ring-based	-414	-402	+142	+165
Boxy Bulge "Plus"	Ring-based	-466		+156	
Coleman20	Ring-based		-661		+318
Cao13	Ring-based		-434		+186
F98	Ring-based		-424		+160
X-Shape Bulge	Ring-based	-16		-115	
Boxy Bulge "plus" & DM	Ring-based	-734		+351	
Boxy & X-Shaped Bulge	Ring-based	-350		+119	
No Excess	Astrophysical (another model)	+1805	+1804	-50	-216
Dark Matter	Astrophysical	-943	-943	+1290	+1122
Boxy Bulge	Astrophysical	-53	-53	+835	+669
Boxy Bulge "Plus"	Astrophysical	-132		+875	
Coleman20	Astrophysical		-1431		+1354
Cao13	Astrophysical		-412		+849
F98	Astrophysical		-1070		+1176
Boxy Bulge "plus" & DM	Astrophysical	-1056		+1320	

Yi-Ming Zhong (CityU HK)

Compare

McDermott et al., arXiv:2209.00006v3

Yi-Ming Zhong (CityU HK)

Song et al., arXiv:2402.05449v1

Residue templates used in Pohl et al. (2020)

Yi-Ming Zhong (CityU HK)

Spectra from ring-based templates

Yi-Ming Zhong (CityU HK)

McDermott et al., arXiv:2209.00006v3

Yi-Ming Zhong (CityU HK)

Yi-Ming Zhong (CityU HK)

