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the QFT

L = 1
2
∂µφ(□+m2)∂ µφ + λ3(∂µφ∂ µφ)□φ + λ4(∂µφ∂ µφ)2

▶ 4-derivatives, both in the interaction terms and the kinetic
terms

▶ dimensionless real scalar field φ(x) and dimensionless
couplings λ3 and λ4

▶ shift symmetry φ → φ + c

▶ m2 breaks the classical scale invariance
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proxy for quantum quadratic gravity (QQG)

▶ Einstein action is supplemented with terms quadratic in
curvature, and these terms bring in 4-derivatives

▶ 4-derivatives in kinetic and interaction terms

▶ both theories are renormalizable

▶ the shift symmetry is playing the role of coordinate invariance
of the gravity theory

▶ the m2∂µφ∂ µφ is playing the role of the Einstein term

▶ at low energies this term dominates; left with a normal
massless field with non-renormalizable interactions
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UV completeness

▶ both theories are UV complete, and so we can see what
happens at energies much higher than m

▶ also refer to this as the m → 0 limit

▶ ultra-Planckian energies in the case of gravity

▶ the story of four derivatives is similar for the two theories

▶ will focus on the simpler theory
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ghost

▶ propagator has massive pole with abnormal sign — implies
negative norm state

▶ with correct quantization this does not violate stability or
unitarity

▶ all perturbative states have positive energy

▶ S-matrix unitarity holds, that is S1S† = 1, where 1 =
∑

X
|X⟩⟨X|
⟨X|X⟩

reflects the negative norms
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optical theorem

▶ the optical theorem can be directly verified in perturbation
theory by keeping track of minus signs

▶ the LHS is imag part of forward scattering amplitude, and its
calculation is affected by any wrong-sign propagators

▶ the RHS is a scattering process into on-shell final states, and
this is affected by any negative norms among these states

▶ thus the LHS and RHS of the optical theorem are both
affected in such a way that it remains satisfied
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Born rule is the problem

▶ due to negative norms, probabilities can be negative or
greater than unity

▶ but Born rule is a separate aspect of QM — and thus could be
modified independently of unitarity (a different talk)

▶ here we shall assume standard Born rule and consider
positivity constraints in the high energy limit
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β-functions

▶ treat the renormalization of ∂µφ□∂ µφ term as a standard
wave function renormalization (2023)

dλ3

d lnµ
= − 5

4π2 (λ4λ3 +
3
4
λ3

3)

dλ4

d lnµ
= − 5

4π2 (λ
2
4 + λ4λ

2
3)
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curiosities

▶ first diagram (tadpole) naively contributes to running of m2,
but it does not have ln(p/µ) dependence, and so does not

▶ the following diagrams are finite

9



renormalization group flow
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▶ arrows point to the UV
▶ mostly asymptotic freedom in UV
▶ some flows also show asymptotic freedom in IR
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a new mass scale

▶ flow towards IR stops when the energy scale drops below m;
this is the transition to the low energy theory

▶ for sufficiently small m, the flow towards the IR can result in
large couplings

▶ this can create a new mass scale through dimensional
transmutation

▶ in gravity this can be the origin of the Planck mass
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preview

▶ describe a simplified method for calculating in the high
energy limit (2024)

▶ original method involves decomposing φ into two degrees of
freedom

▶ with simplified method there appears to be only one degree of
freedom at high energies

▶ calculate LHS and RHS of optical theorem, and also a
differential cross section, as functions of λ3 and λ4

▶ positivity picks out the allowed region on the RG flow plane
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a related issue

▶ four derivative interaction terms produce diverging
amplitudes at large momenta

▶ using original method we found that cancellations take place
at the level of differential cross sections

▶ then inclusive diff cross sections have good high energy
behaviour (as in QQG 2022)

▶ the simplified method with effectively one degree of freedom
clarifies what is happening
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mass derivative

▶ four derivative propagator G(4)(p2, m2) can be written in
terms of the Feynman propagator

G(2)(p2, m2) =
1

p2 − m2 + iϵ

as

G(4)(p2, m2) = −G(2)(p2, m2)− G(2)(p2, 0)
m2

▶ thus in the m → 0 limit (high energy limit)

lim
m→0

G(4)(p2, m2) = lim
m→0
(− d

dm2 )G
(2)(p2, m2)
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LHS of optical theorem

▶ the imaginary part of a forward scattering amplitude Ai→i is
extracted by using

Im(G(2)(p2, m2)) = −iπδ(p2 − m2).

▶ the analog for G(4) in the m → 0 limit is

lim
m→0

Im(G(4)(p2, m2)) = −iπ lim
m→0
(− d

dm2 )δ(p
2 − m2)

▶ the additional operation, − limm→0
d

dm2 , also works on the
RHS of the optical theorem
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RHS of optical theorem

▶ each on-shell particle in a final state f should be assigned its
own dummy mass mj

▶ |Ai→f |2 will depend on the values of these mj’s via the on-shell
conditions

▶ contribution from final state f takes the form

lim
{mj}→0

n∏
j=1

(− d
dm2

j
)|Ai→f (m1..mn)|2
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|Ai→f |2 for φφ → φφ

2

▶ initial state is fixed e.g. two massless particles

▶ new method reproduces the usual sum over the φφ final
states in m → 0 limit

17



now the LHS of optical theorem

▶ imaginary part of the forward scattering amplitude

▶ various diagrams are of order λ2
4, λ4λ

2
3 or λ4

3
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result for optical theorem

▶ LHS and RHS calculated independently

LHS = RHS =
s2

6π
(6λ4

3 + 19λ2
3λ4 + 14λ2

4)

▶ RHS naively goes like s4, being the square of amplitudes that
go like s2

▶ is reduced to s2 behaviour because of − d
dm2 applied twice

▶ RHS of optical theorem must be positive since it is related to a
total cross section
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the positivity constraint

▶ RHS is negative for −6
7 < λ4/λ

2
3 < −1

2

▶ this region is shaded orange, and the red line is λ4 = −1
2λ

2
3
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below red line

▶ all flows below this line will eventually enter the orange
region in the UV

▶ thus all such flows are forbidden

▶ the allowed flows are on or to the right of the red line

▶ these couplings are asymptotically free in the UV and can
become strong in the IR
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meaning of red line

▶ the red line marks the boundary between two sets of flows
that are qualitatively different

▶ on red line and with m = 0, Lagrangian becomes a square

L = −1
2
(□φ − λ3∂µφ∂

µφ)2

▶ LHS = RHS vanishes on red line

▶ is the theory trivial on red line? (see below)

22



two degrees of freedom?

▶ consider the two fields constructed from φ,

ψ1 =
1

m2 (□+m2)φ

ψ2 =
1

m2□φ

▶ when expressed in terms of ψ1 and ψ2 the kinetic term of the
Lagrangian becomes

−m2

2
ψ1□ψ1 +

m2

2
ψ2(□+m2)ψ2

▶ ψ1 and ψ2 are the two fields of definite mass (0 and m) and
definite norm (+ and −)
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one degree of freedom

▶ but we also have φ = ψ1 −ψ2

▶ thus φ = ψ1 −ψ2 is the only combination that appears in
interaction terms

▶ meanwhile the operation − limm→0
d

dm2 accounts for the
difference in propagation of the two fields

▶ we can calculate with just a single massive degree of freedom
and then apply the − limm→0

d
dm2 operations
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apply to initial as well as final states of φφ → φφ

▶ need to find the dependence on the set of four masses mj

coming from the on-shell constraints

▶ before taking the four m2
j -derivatives, would diverge as

∼ (s2)2/s for large s

▶ a term ∼ m2
1m2

2m2
3m2

4/s is needed to survive

▶ in the end we have a differential cross section that behaves
like 1/s at large s times a function of the scattering angle
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result

▶ the differential cross section for φφ → φφ scattering at high
energies

dσ
dΩ
=
((
λ4

3 − 4λ2
4
)

sin(θ )6 + 24λ2
4 sin(θ )4 +

(
−48λ4

3 − 96λ2
3λ4

)
sin(θ )2

+64λ4
3 + 128λ2

3λ4
)
/(16π2 sin(θ )4 s)

▶ this result is positive definite for any θ as long as λ4 ≥ −1
2λ

2
3

▶ this is the same constraint as before!
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the λ4 ≥ −1
2λ

2
3 constraint
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▶ positivity has again picked out the running couplings that flow
to strong coupling in the infrared
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on red line

▶ interesting special case on the red line:

dσ
dΩ
=

3λ2
4

2π2s
when λ4 = −1

2
λ2

3

▶ simple, but does not vanish, and so theory is not completely
trivial on red line

▶ calculating the m → 0 limit may be different from the m ≡ 0
theory
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what happens at lower energies?

▶ then massive ghost state ψ2 can be distinguished from the
massless normal state ψ1
▶ three possibilities:

1. ghost state is not an asymptotic state because of decay
(Lee-Wick, Donoghue-Menezes)

2. ghost state is not an asymptotic state because of strong
interactions

3. ghost state remains an asymptotic state (Kubo and Kugo)
▶ but theory may support an inner product whereby the norm of

this state is positive
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gauged extension

▶ consider another example of how 4-derivative kinetic terms
can enable good high energy behavior: an interacting U(1)
gauge field

▶ the Stuckelberg representation of a massive U(1) gauge field is

L = − 1
4g2 FµνFµν +

1
2

m2VµVµ,

Vµ = Aµ + ∂µφ,

Fµν = ∂µVν − ∂νVµ = ∂µAν − ∂νAµ

▶ adding interaction terms, such as λ3VµVµ ∂µVµ + λ4(VµVµ)2,
produce amplitudes that grow like s2/m4
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gauged extension

▶ thus the interacting theory can only be a low energy effective
theory (Kribs, Lee, Martin 2022)

▶ to UV complete the Stuckelberg theory with interactions, we
need a 4-derivative kinetic term here as well

▶ leads to gauged extension of our scalar theory

L = − 1
4g2 FµνFµν +

1
2

Vµ(□+m2)Vµ + λ3VµVµ ∂µVµ + λ4(VµVµ)2

▶ starting point for a renormalizable theory of a U(1)
gauge-boson that is not only massive but is also interacting
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gauge symmetry

▶ our previous shift symmetry has been promoted into a gauge
symmetry, φ → φ − α and Aµ → Aµ + ∂µα, such that Vµ is
invariant

▶ add standard gauge fixing term to the Lagrangian,

Lgf = − 1
2ξ

G2 −ω∗(sG)

▶ s implements BRST transformation and ω∗ is the antighost

▶ choose G = ∂µAµ − ξ(□+m2)φ
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cancellations

▶ this causes the terms mixing Aµ and ∂µφ to cancel

L(2) =− 1
4g2 FµνFµν +

1
2

Aµ(□+m2)Aµ − 1
2ξ
(∂µAµ)2

+
1
2
∂µφ(□+m2)∂ µφ − 1

2
ξ((□+m2)φ)2

−ω∗(∂ 2 − ξ(□− m2)
)
ω
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combined propagator

▶ define 1/ζ = 1+ 1/g2

− i⟨0|T(Aµ + ∂µφ)(Aν + ∂νφ)|0⟩

= − 1
p2 − ζm2

(
ζgµν + (1 − ζ) pµpν

p2 − m2

)
▶ combined propagator is independent of the gauge parameter

due to the gauge invariance of Aµ + ∂µφ

▶ the physical parameter ζ varies over 0 ≤ ζ ≤ 1 as 0 ≤ g2 ≤ ∞
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four degrees of freedom

▶ usual decomposition of the standard massive gauge-boson
propagator

− 1
p2 − m2

(
gµν −

pµpν
p2

)
+

1
m2

pµpν
p2

▶ instead we have

− ζ

p2 − ζm2

(
gµν −

pµpν
p2

)
− pµpν

p2(p2 − m2)

▶ first term propagates two transverse degrees of freedom

▶ second term propagates two longitudinal degrees of freedom
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2 → 2 scattering in high energy limit

▶ calculate various exclusive differential cross sections for Aµ’s
and φ’s and then add together to get the physical result

▶ the various exclusive differential cross sections are separately
well-behaved at high energies, all falling like 1/s

▶ we have achieved good high energy behaviour, necessary for a
UV complete theory

▶ but not quite, the U(1) gauge coupling is not asymptotically
free

36



now look at positivity

▶ consider the exclusive differential cross section for
φφ → φφ; now has contribution from photon exchange

▶ this is the only exclusive differential cross section that has the
sin(θ )−4 dependence, and near θ ≈ 0 it is

dσ
dΩ
=

4λ3
2
((
ζ2 − 3ζ+ 1

)
λ3

2 − 6ζλ4 + 2λ4

)
π2θ4s
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constraint that this pole be positive

▶ the yellow region is ruled out
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full positivity constraint

▶ sum of all the exclusive differential cross sections
→ must be above the blue line
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conclusion

▶ considered 4 derivative scalar field theory as proxy for
quantum quadratic gravity

▶ scattering of the effectively one scalar degree of freedom
displays good high energy behavior

▶ positivity constrains λ4/λ
2
3 ≥ −1/2; a natural boundary on

the RG flow diagram

▶ opens up a renormalizable and interacting U(1) gauge theory
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