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the QFT

L= 28up(@+m)3k + A5(Bup0 )0 + a(Bud O

» 4-derivatives, both in the interaction terms and the kinetic
terms

» dimensionless real scalar field ¢ (x) and dimensionless
couplings A3 and A4

» shift symmetry ¢ — ¢ +c¢

» m2 breaks the classical scale invariance



proxy for quantum quadratic gravity (QQG)

> Einstein action is supplemented with terms quadratic in
curvature, and these terms bring in 4-derivatives

» 4-derivatives in kinetic and interaction terms
» both theories are renormalizable

» the shift symmetry is playing the role of coordinate invariance
of the gravity theory

> the m?0,¢ 3" ¢ is playing the role of the Einstein term

> at low energies this term dominates; left with a normal
massless field with non-renormalizable interactions



UV completeness

» both theories are UV complete, and so we can see what
happens at energies much higher than m

» also refer to this as the m — 0 limit
» ultra-Planckian energies in the case of gravity
» the story of four derivatives is similar for the two theories

» will focus on the simpler theory



ghost

propagator has massive pole with abnormal sign — implies
negative norm state

with correct quantization this does not violate stability or
unitarity

all perturbative states have positive energy

S-matrix unitarity holds, that is S1S" = 1, where 1 =) ;. ‘};P?l

reflects the negative norms



optical theorem

> the optical theorem can be directly verified in perturbation
theory by keeping track of minus signs

» the LHS is imag part of forward scattering amplitude, and its
calculation is affected by any wrong-sign propagators

» the RHS is a scattering process into on-shell final states, and
this is affected by any negative norms among these states

» thus the LHS and RHS of the optical theorem are both
affected in such a way that it remains satisfied



Born rule is the problem

> due to negative norms, probabilities can be negative or
greater than unity

» but Born rule is a separate aspect of QM — and thus could be
modified independently of unitarity (a different talk)

» here we shall assume standard Born rule and consider
positivity constraints in the high energy limit



p-functions

> treat the renormalization of J,¢p 0" ¢ term as a standard
wave function renormalization (2023)
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curiosities

> first diagram (tadpole) naively contributes to running of m?,
but it does not have In(p/u) dependence, and so does not

» the following diagrams are finite
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the UV

> mostly asymptotic freedom in UV
» some flows also show asymptotic freedom in IR

> arrows point to



a new mass scale

> flow towards IR stops when the energy scale drops below m;
this is the transition to the low energy theory

» for sufficiently small m, the flow towards the IR can result in
large couplings

> this can create a new mass scale through dimensional
transmutation

» in gravity this can be the origin of the Planck mass



preview

» describe a simplified method for calculating in the high
energy limit (2024)

» original method involves decomposing ¢ into two degrees of
freedom

> with simplified method there appears to be only one degree of
freedom at high energies

» calculate LHS and RHS of optical theorem, and also a
differential cross section, as functions of A3 and A4

> positivity picks out the allowed region on the RG flow plane



a related issue

» four derivative interaction terms produce diverging
amplitudes at large momenta

» using original method we found that cancellations take place
at the level of differential cross sections

» then inclusive diff cross sections have good high energy
behaviour (as in QQG 2022)

> the simplified method with effectively one degree of freedom
clarifies what is happening



mass derivative

» four derivative propagator G*)(p2, m?) can be written in
terms of the Feynman propagator
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» thus in the m — 0 limit (high energy limit)
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LHS of optical theorem

» the imaginary part of a forward scattering amplitude A;_.; is
extracted by using

Im(GP(p?, m?)) = —ind(p? — m?).
» the analog for G in the m — 0 limit is
d
i B (2 12Y) — i i (o 2 2
r}llg%)lm(G (p=,m*)) i n111310( dm2)5(p m*)

» the additional operation, — lim;, ¢ #, also works on the
RHS of the optical theorem



RHS of optical theorem

» each on-shell particle in a final state f should be assigned its
own dummy mass m;

> IAi_)f\z will depend on the values of these m;’s via the on-shell
conditions

» contribution from final state f takes the form

hm H(—diz)‘Alﬁf(ml mn)‘
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[Ais[* for ¢ — ¢

> initial state is fixed e.g. two massless particles

» new method reproduces the usual sum over the ¢ ¢ final
states in m — O limit



now the LHS of optical theorem

» imaginary part of the forward scattering amplitude

> various diagrams are of order 1%, 14A2 or A3

TN
N
N N s
Y \ L
N N .
N y \ N
N —
\ PN s S AN
N \ s / N
N4 N % N
7 7 \
NS 7 <
R K / .
\ /N
N N /
s S N /
v - N /
, . /
N /N
N 2N
</ N\
N
AR
s
/




result for optical theorem

» LHS and RHS calculated independently
LHS = RHS = —(614 + 19432, + 1423)

> RHS naively goes like s%, being the square of amplitudes that
go like 52

> is reduced to s? behaviour because of — apphed twice

» RHS of optical theorem must be positive since it is related to a
total cross section






below red line

» all flows below this line will eventually enter the orange
region in the UV

» thus all such flows are forbidden
> the allowed flows are on or to the right of the red line

> these couplings are asymptotically free in the UV and can
become strong in the IR
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meaning of red line

» the red line marks the boundary between two sets of flows
that are qualitatively different

» on red line and with m = 0, Lagrangian becomes a square
1
£=—5(0¢ — Aadup 2" p)?

» LHS = RHS vanishes on red line

> is the theory trivial on red line? (see below)
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two degrees of freedom?

» consider the two fields constructed from ¢,
_ 1 2
1 = =@+ m)
1
Yo = @E@

» when expressed in terms of v¢; and 15 the kinetic term of the
Lagrangian becomes

2 2
O + (@ + mA s

> 1); and 1), are the two fields of definite mass (0 and m) and
definite norm (+ and —)
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one degree of freedom

> but we also have ¢ =1 — 1

» thus ¢ =1 — 1 is the only combination that appears in
interaction terms

» meanwhile the operation — lim,, . # accounts for the
difference in propagation of the two fields

> we can calculate with just a single massive degree of freedom
. d .
and then apply the —lim;, ,o ;> operations
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apply to initial as well as final states of ¢p¢p — ¢ ¢

need to find the dependence on the set of four masses m;
coming from the on-shell constraints

before taking the four mjz-derivatives, would diverge as

~ (s2)?/s for large s

a term ~ m?m3m3m?/s is needed to survive

in the end we have a differential cross section that behaves
like 1/s at large s times a function of the scattering angle
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result

» the differential cross section for ¢ ¢ — ¢ ¢ scattering at high
energies

do

‘o = (24— 423) sin(0)° + 2423 sin(0)" + (~482] — 962324 sin(6)”

+6425 + 128A324) /(167%sin(0)*s)

> this result is positive definite for any 6 as long as A4 > —%A%

» this is the same constraint as before!
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on red line

> interesting special case on the red line:

do  3A%
dQ ~ 2m32s

when A4 = —%A%

> simple, but does not vanish, and so theory is not completely
trivial on red line

» calculating the m — 0 limit may be different from the m =0
theory

28



what happens at lower energies?

> then massive ghost state 1, can be distinguished from the
massless normal state )1
> three possibilities:

1. ghost state is not an asymptotic state because of decay
(Lee-Wick, Donoghue-Menezes)

2. ghost state is not an asymptotic state because of strong
interactions

3. ghost state remains an asymptotic state (Kubo and Kugo)

> but theory may support an inner product whereby the norm of
this state is positive
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gauged extension

> consider another example of how 4-derivative kinetic terms
can enable good high energy behavior: an interacting U(1)
gauge field

» the Stuckelberg representation of a massive U(1) gauge field is

1 1,
L= _@FHVFMV + Em V.,_LV‘M,
Vu=Au+ o,

Fuv = 8,Vy — 85V = A, — A,

> adding interaction terms, such as A3V, V¥ 9, V* + A4(V,V*)2,
produce amplitudes that grow like s2/m*
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gauged extension

thus the interacting theory can only be a low energy effective
theory (Kribs, Lee, Martin 2022)

to UV complete the Stuckelberg theory with interactions, we
need a 4-derivative kinetic term here as well

leads to gauged extension of our scalar theory

1
L= 4g2Fqu“ + V (O + m2)VE 4 A3V, VH 9, V% + Ag(V,VH)?

starting point for a renormalizable theory of a U(1)
gauge-boson that is not only massive but is also interacting
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gauge symmetry

» our previous shift symmetry has been promoted into a gauge
symmetry, ¢ — ¢ —a and A, — Ay + Jua, such that V), is
invariant

> add standard gauge fixing term to the Lagrangian,

1
Lot =—5g9" —(s9)

» s implements BRST transformation and w* is the antighost

> choose G = A — (O +m?)¢
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cancellations

» this causes the terms mixing A, and J, ¢ to cancel

1

4g2

+ 8@+ m)oHg — JE(O+m)pY
w*(az 4 (= mz)) w

1 1
E(z) = _ Fqu“v + EAM(D + mz)AM - E(auAM)Z
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combined propagator

» define1/{ =1+1/g>

— {{0|T(Ay + Sud)(Ay + 3,9)|0)
<Cguv £ (1= g)Pubr )

pZ —m?

B
- p2 _ Cm2

» combined propagator is independent of the gauge parameter
due to the gauge invariance of A, + J,¢

> the physical parameter { varies over 0 < { < 1as 0 < g% < o
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four degrees of freedom

» usual decomposition of the standard massive gauge-boson
propagator

1 pupv , 1 pupy
PP _m? (&w— pz) M

» instead we have

B ¢ g _ bubPv\ PuPv
p2—¢m2 \**"  p2 | p*(p?-m?)

> first term propagates two transverse degrees of freedom

» second term propagates two longitudinal degrees of freedom
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2 — 2 scattering in high energy limit

» calculate various exclusive differential cross sections for A,’s
and ¢’s and then add together to get the physical result

> the various exclusive differential cross sections are separately
well-behaved at high energies, all falling like 1/s

» we have achieved good high energy behaviour, necessary for a
UV complete theory

> but not quite, the U(1) gauge coupling is not asymptotically
free
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now look at positivity

» consider the exclusive differential cross section for
¢ ¢ — ¢ ¢; now has contribution from photon exchange

> this is the only exclusive differential cross section that has the
sin(0)~* dependence, and near 6 ~ 0 it is

io 48’ ((52 —30+1) 3% - 6044 + 214)

dQ m20%s
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constraint that this pole be positive

> the yellow region is ruled out

0.2 1

0.3

0.4

0.5

38



full positivity constraint

» sum of all the exclusive differential cross sections
— must be above the blue line

0.2 1

0.5
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conclusion

» considered 4 derivative scalar field theory as proxy for
quantum quadratic gravity

> scattering of the effectively one scalar degree of freedom
displays good high energy behavior

> positivity constrains A4/A% > —1/2; a natural boundary on
the RG flow diagram

> opens up a renormalizable and interacting U(1) gauge theory
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