UV complete 4-derivative scalar field theory

Bob Holdom

International Workshop on New Opportunities for Particle Physics July 2024 Institute of High Energy Physics, Chinese Academy of Sciences

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi (\Box + m^2) \partial^{\mu} \phi + \lambda_3 (\partial_{\mu} \phi \partial^{\mu} \phi) \Box \phi + \lambda_4 (\partial_{\mu} \phi \partial^{\mu} \phi)^2
$$

- ▶ 4-derivatives, both in the interaction terms and the kinetic terms
- \blacktriangleright dimensionless real scalar field $\phi(x)$ and dimensionless couplings λ_3 and λ_4
- \blacktriangleright shift symmetry $\phi \to \phi + c$
- \blacktriangleright m^2 breaks the classical scale invariance

proxy for quantum quadratic gravity (QQG)

- \blacktriangleright Einstein action is supplemented with terms quadratic in curvature, and these terms bring in 4-derivatives
- ▶ 4-derivatives in kinetic and interaction terms
- \triangleright both theories are renormalizable
- \blacktriangleright the shift symmetry is playing the role of coordinate invariance of the gravity theory
- ▶ the *^m*2*∂µφ∂ ^µ^φ* is playing the role of the Einstein term
- \blacktriangleright at low energies this term dominates; left with a normal massless field with non-renormalizable interactions
- ▶ both theories are UV complete, and so we can see what happens at energies much higher than *m*
- \blacktriangleright also refer to this as the $m \to 0$ limit
- \blacktriangleright ultra-Planckian energies in the case of gravity
- \blacktriangleright the story of four derivatives is similar for the two theories
- ▶ will focus on the simpler theory
- \triangleright propagator has massive pole with abnormal sign implies negative norm state
- ▶ with correct quantization this does not violate stability or unitarity
- \blacktriangleright all perturbative states have positive energy
- ▶ S-matrix unitarity holds, that is $S1S^{\dagger} = 1$, where $1 = \sum_{X}$ |*X*⟩⟨*X*| $\langle X|X\rangle$ reflects the negative norms
- \blacktriangleright the optical theorem can be directly verified in perturbation theory by keeping track of minus signs
- ▶ the LHS is imag part of forward scattering amplitude, and its calculation is affected by any wrong-sign propagators
- ▶ the RHS is a scattering process into on-shell final states, and this is affected by any negative norms among these states
- ▶ thus the LHS and RHS of the optical theorem are both affected in such a way that it remains satisfied
- ▶ due to negative norms, probabilities can be negative or greater than unity
- \triangleright but Born rule is a separate aspect of QM and thus could be modified independently of unitarity (a different talk)
- \blacktriangleright here we shall assume standard Born rule and consider positivity constraints in the high energy limit

β-functions

▶ treat the renormalization of $\partial_\mu \phi \Box \partial^\mu \phi$ term as a standard wave function renormalization (2023)

$$
\frac{d\lambda_3}{d\ln\mu} = -\frac{5}{4\pi^2}(\lambda_4\lambda_3 + \frac{3}{4}\lambda_3^3)
$$

$$
\frac{d\lambda_4}{d\ln\mu} = -\frac{5}{4\pi^2}(\lambda_4^2 + \lambda_4\lambda_3^2)
$$

- \blacktriangleright first diagram (tadpole) naively contributes to running of m^2 , but it does not have $ln(p/\mu)$ dependence, and so does not
- \blacktriangleright the following diagrams are finite

renormalization group flow

- ▶ arrows point to the UV
- ▶ mostly asymptotic freedom in UV
- ▶ some flows also show asymptotic freedom in IR
- ▶ flow towards IR stops when the energy scale drops below *m*; this is the transition to the low energy theory
- ▶ for sufficiently small *m*, the flow towards the IR can result in large couplings
- \triangleright this can create a new mass scale through dimensional transmutation
- \triangleright in gravity this can be the origin of the Planck mass

- \triangleright describe a simplified method for calculating in the high energy limit (2024)
- ▶ original method involves decomposing *φ* into two degrees of freedom
- ▶ with simplified method there appears to be only one degree of freedom at high energies
- ▶ calculate LHS and RHS of optical theorem, and also a differential cross section, as functions of *λ*³ and *λ*⁴
- ▶ positivity picks out the allowed region on the RG flow plane

 \triangleright four derivative interaction terms produce diverging amplitudes at large momenta

- \blacktriangleright using original method we found that cancellations take place at the level of differential cross sections
- \blacktriangleright then inclusive diff cross sections have good high energy behaviour (as in QQG 2022)
- ▶ the simplified method with effectively one degree of freedom clarifies what is happening

mass derivative

▶ four derivative propagator $G^{(4)}(p^2, m^2)$ can be written in terms of the Feynman propagator

$$
G^{(2)}(p^2, m^2) = \frac{1}{p^2 - m^2 + i\varepsilon}
$$

as

$$
G^{(4)}(p^2, m^2) = -\frac{G^{(2)}(p^2, m^2) - G^{(2)}(p^2, 0)}{m^2}
$$

 \triangleright thus in the $m \to 0$ limit (high energy limit)

$$
\lim_{m \to 0} G^{(4)}(p^2, m^2) = \lim_{m \to 0} (-\frac{d}{dm^2}) G^{(2)}(p^2, m^2)
$$

▶ the imaginary part of a forward scattering amplitude $A_{i\rightarrow i}$ is extracted by using

Im
$$
(G^{(2)}(p^2, m^2)) = -i\pi \delta(p^2 - m^2)
$$
.

▶ the analog for *G*⁽⁴⁾ in the *m* → 0 limit is

$$
\lim_{m \to 0} \text{Im}(G^{(4)}(p^2, m^2)) = -i\pi \lim_{m \to 0} (-\frac{d}{dm^2}) \delta(p^2 - m^2)
$$

► the additional operation, $-\lim_{m\to 0} \frac{d}{dm^2}$, also works on the RHS of the optical theorem

- ▶ each on-shell particle in a final state *f* should be assigned its own dummy mass *m^j*
- $\blacktriangleright |\mathcal{A}_{i\rightarrow f}|^2$ will depend on the values of these m_j 's via the on-shell conditions
- \triangleright contribution from final state f takes the form

$$
\lim_{\{m_j\}\to 0}\prod_{j=1}^n(-\frac{d}{dm_j^2})|\mathcal{A}_{i\to f}(m_1..m_n)|^2
$$

 $|A_{i\rightarrow f}|^2$ for $\phi \phi \rightarrow \phi \phi$

- ▶ initial state is fixed e.g. two massless particles
- **•** new method reproduces the usual sum over the $\phi \phi$ final states in $m \rightarrow 0$ limit

now the LHS of optical theorem

- ▶ imaginary part of the forward scattering amplitude
- \triangleright various diagrams are of order λ_4^2 , $\lambda_4 \lambda_3^2$ or λ_3^4

▶ LHS and RHS calculated independently

LHS = RHS =
$$
\frac{s^2}{6\pi} (6\lambda_3^4 + 19\lambda_3^2\lambda_4 + 14\lambda_4^2)
$$

- \blacktriangleright RHS naively goes like s^4 , being the square of amplitudes that go like *s* 2
- **►** is reduced to *s*² behaviour because of $-\frac{d}{dm^2}$ applied twice
- \triangleright RHS of optical theorem must be positive since it is related to a total cross section

the positivity constraint

▶ RHS is negative for $-\frac{6}{7} < \lambda_4/\lambda_3^2 < -\frac{1}{2}$

► this region is shaded orange, and the red line is $\lambda_4 = -\frac{1}{2}\lambda_3^2$

- \blacktriangleright all flows below this line will eventually enter the orange region in the UV
- \blacktriangleright thus all such flows are forbidden
- \blacktriangleright the allowed flows are on or to the right of the red line
- \triangleright these couplings are asymptotically free in the UV and can become strong in the IR

 \blacktriangleright the red line marks the boundary between two sets of flows that are qualitatively different

 \triangleright on red line and with $m = 0$, Lagrangian becomes a square

$$
\mathcal{L} = -\frac{1}{2} (\Box \phi - \lambda_3 \partial_\mu \phi \partial^\mu \phi)^2
$$

 \blacktriangleright LHS = RHS vanishes on red line

 \blacktriangleright is the theory trivial on red line? (see below)

two degrees of freedom?

 \triangleright consider the two fields constructed from ϕ ,

$$
\psi_1 = \frac{1}{m^2} (\Box + m^2) \phi
$$

$$
\psi_2 = \frac{1}{m^2} \Box \phi
$$

 \triangleright when expressed in terms of ψ_1 and ψ_2 the kinetic term of the Lagrangian becomes

$$
-\frac{m^2}{2}\psi_1\Box\psi_1+\frac{m^2}{2}\psi_2(\Box+m^2)\psi_2
$$

 $\blacktriangleright \psi_1$ and ψ_2 are the two fields of definite mass (0 and *m*) and definite norm $(+$ and $-)$

- \triangleright but we also have $\phi = \psi_1 \psi_2$
- **►** thus $\phi = \psi_1 \psi_2$ is the only combination that appears in interaction terms
- ▶ meanwhile the operation [−] lim*m*→⁰ *d dm*² accounts for the difference in propagation of the two fields
- ▶ we can calculate with just a single massive degree of freedom and then apply the − lim*m*→⁰ *d dm*² operations

apply to initial as well as final states of $\phi \phi \rightarrow \phi \phi$

 \triangleright need to find the dependence on the set of four masses m_i coming from the on-shell constraints

 \blacktriangleright before taking the four m_j^2 -derivatives, would diverge as ∼ (*s* 2) ²*/s* for large *s*

- ▶ a term $\sim m_1^2 m_2^2 m_3^2 m_4^2 / s$ is needed to survive
- \blacktriangleright in the end we have a differential cross section that behaves like 1*/s* at large *s* times a function of the scattering angle
- \triangleright the differential cross section for $\phi \phi \rightarrow \phi \phi$ scattering at high energies
- *dσ* $\frac{d\sigma}{d\Omega} = \left(\left(\lambda_3^4 - 4\lambda_4^2 \right) \sin(\theta_3^6 + 24\lambda_4^2 \sin(\theta_3^4) + \left(-48\lambda_3^4 - 96\lambda_3^2 \lambda_4 \right) \sin(\theta_3^2) \right)$ $+64\lambda_3^4 + 128\lambda_3^2\lambda_4$ $/(16\pi^2 \sin(\theta)^4 s)$
	- **►** this result is positive definite for any *θ* as long as $λ_4 ≥ -\frac{1}{2}λ_3^2$
	- \blacktriangleright this is the same constraint as before!

the $\lambda_4 \geq -\frac{1}{2}\lambda_3^2$ $\frac{2}{3}$ constraint

▶ positivity has again picked out the running couplings that flow to strong coupling in the infrared

 \triangleright interesting special case on the red line:

$$
\frac{d\sigma}{d\Omega} = \frac{3\lambda_4^2}{2\pi^2 s} \quad \text{when } \lambda_4 = -\frac{1}{2}\lambda_3^2
$$

- ▶ simple, but does not vanish, and so theory is not completely trivial on red line
- ▶ calculating the $m \rightarrow 0$ limit may be different from the $m \equiv 0$ theory

what happens at lower energies?

- \blacktriangleright then massive ghost state ψ_2 can be distinguished from the massless normal state *ψ*¹
- \blacktriangleright three possibilities:
- 1. ghost state is not an asymptotic state because of decay (Lee-Wick, Donoghue-Menezes)
- 2. ghost state is not an asymptotic state because of strong interactions
- 3. ghost state remains an asymptotic state (Kubo and Kugo)
	- ▶ but theory may support an inner product whereby the norm of this state is positive

gauged extension

- ▶ consider another example of how 4-derivative kinetic terms can enable good high energy behavior: an interacting *U*(1) gauge field
- \blacktriangleright the Stuckelberg representation of a massive $U(1)$ gauge field is

$$
\mathcal{L} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 V_{\mu} V^{\mu},
$$

\n
$$
V_{\mu} = A_{\mu} + \partial_{\mu} \phi,
$$

\n
$$
F_{\mu\nu} = \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}
$$

▶ adding interaction terms, such as $\lambda_3 V_\mu V^\mu \partial_\mu V^\mu + \lambda_4 (V_\mu V^\mu)^2$, produce amplitudes that grow like *s* ²*/m*⁴

- \blacktriangleright thus the interacting theory can only be a low energy effective theory (Kribs, Lee, Martin 2022)
- \triangleright to UV complete the Stuckelberg theory with interactions, we need a 4-derivative kinetic term here as well
- \blacktriangleright leads to gauged extension of our scalar theory

$$
\mathcal{L} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} V_{\mu} (\Box + m^2) V^{\mu} + \lambda_3 V_{\mu} V^{\mu} \partial_{\mu} V^{\mu} + \lambda_4 (V_{\mu} V^{\mu})^2
$$

 \blacktriangleright starting point for a renormalizable theory of a $U(1)$ gauge-boson that is not only massive but is also interacting ▶ our previous shift symmetry has been promoted into a gauge symmetry, $\phi \rightarrow \phi - \alpha$ and $A_u \rightarrow A_u + \partial_u \alpha$, such that V_u is invariant

 \triangleright add standard gauge fixing term to the Lagrangian,

$$
\mathcal{L}_{\text{gf}} = -\frac{1}{2\xi}\mathcal{G}^2 - \omega^*(\mathbf{s}\mathcal{G})
$$

▶ **s** implements BRST transformation and *ω*[∗] is the antighost

$$
\bullet \ \ \text{choose } \mathcal{G} = \partial_{\mu} A^{\mu} - \xi (\Box + m^2) \phi
$$

 $▶$ this causes the terms mixing A_μ and $\partial_\mu \phi$ to cancel

$$
\mathcal{L}^{(2)} = -\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} A_{\mu} (\Box + m^2) A^{\mu} - \frac{1}{2\xi} (\partial_{\mu} A^{\mu})^2 \n+ \frac{1}{2} \partial_{\mu} \phi (\Box + m^2) \partial^{\mu} \phi - \frac{1}{2} \xi ((\Box + m^2) \phi)^2 \n- \omega^* (\partial^2 - \xi (\Box - m^2)) \omega
$$

combined propagator

$$
\begin{aligned} \text{Leftine } 1/\zeta &= 1 + 1/g^2\\ &- i \langle 0 | T(A_\mu + \partial_\mu \phi)(A_\nu + \partial_\nu \phi) | 0 \rangle \\ &= -\frac{1}{p^2 - \zeta m^2} \left(\zeta g_{\mu\nu} + (1 - \zeta) \frac{p_\mu p_\nu}{p^2 - m^2} \right) \end{aligned}
$$

- ▶ combined propagator is independent of the gauge parameter due to the gauge invariance of $A_\mu + \partial_\mu \phi$
- ▶ the physical parameter *ζ* varies over $0 \le \zeta \le 1$ as $0 \le g^2 \le \infty$

four degrees of freedom

▶ usual decomposition of the standard massive gauge-boson propagator

$$
-\frac{1}{p^2 - m^2} \left(g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) + \frac{1}{m^2} \frac{p_\mu p_\nu}{p^2}
$$

 \blacktriangleright instead we have

$$
-\frac{\zeta}{p^2-\zeta m^2}\left({g_{\mu\nu}-\frac{p_\mu p_\nu}{p^2}}\right)-\frac{p_\mu p_\nu}{p^2(p^2-m^2)}
$$

▶ first term propagates two transverse degrees of freedom

▶ second term propagates two longitudinal degrees of freedom

$2 \rightarrow 2$ scattering in high energy limit

- ▶ calculate various exclusive differential cross sections for *^Aµ*'s and ϕ 's and then add together to get the physical result
- \blacktriangleright the various exclusive differential cross sections are separately well-behaved at high energies, all falling like 1*/s*
- ▶ we have achieved good high energy behaviour, necessary for a UV complete theory
- \triangleright but not quite, the $U(1)$ gauge coupling is not asymptotically free
- \triangleright consider the exclusive differential cross section for $\phi \phi \rightarrow \phi \phi$; now has contribution from photon exchange
- ▶ this is the only exclusive differential cross section that has the $\sin(\theta)^{-4}$ dependence, and near $\theta \approx 0$ it is

$$
\frac{d\sigma}{d\Omega} = \frac{4{\lambda_3}^2\left(\left(\zeta^2-3\zeta+1\right){\lambda_3}^2-6\zeta\lambda_4+2\lambda_4\right)}{\pi^2{\theta}^4s}
$$

constraint that this pole be positive

▶ the yellow region is ruled out

full positivity constraint

 \triangleright sum of all the exclusive differential cross sections \rightarrow must be above the blue line

- ▶ considered 4 derivative scalar field theory as proxy for quantum quadratic gravity
- ▶ scattering of the effectively one scalar degree of freedom displays good high energy behavior
- ▶ positivity constrains *^λ*4*/λ*² ³ ≥ −1*/*2; a natural boundary on the RG flow diagram

 \triangleright opens up a renormalizable and interacting $U(1)$ gauge theory