

Investigating the general dark matter-bound-electron interactions in effective field theories

South China Normal University Xiao-Dong Ma

in collaboration with Jin-Han Liang, Yi Liao and Hao-Lin Wang arXiv: 2405. 04855, arXiv: 2406.10912

International Workshop on New Opportunities for Particle Physics (NOPP) 2024 2024.7.18-21. Beijing

1

Evidence of the DM

- Bullet Cluster

 Galaxy rotation curves Gravitational lensing

CMB power spectrum Structure formation N-body simulation

Current constraints on DM-nucleon interaction

But can be probed through electron recoil via DM-electron interaction

- General DM-atom scattering formalism
- DM-electron interactions in the EFTs
- Summary

Constraints on non-relativistic and relativistic interactions

4

+ $(n, \ell, m) \equiv |1\rangle \rightarrow DM + (k', \ell', m') \equiv |2\rangle$ DM

$$\frac{\mathrm{d}\mathscr{R}_{\mathrm{ion}}^{n\ell}}{\mathrm{d}\ln E_e} = \frac{n_x}{128\pi m_x^2 m_e^2} \int \mathrm{d}q \, q \int \frac{\mathrm{d}^3 \mathbf{v}}{v} f_x(\mathbf{v}) \Theta(v)$$
Momentum transfer Velocity distri

Summing over all final atomic states

$$\left| \mathcal{M}_{\text{ion}}^{n\ell} \right|^{2} \equiv \frac{4Vk^{3}}{(2\pi)^{3}} \sum_{m=-\ell}^{\ell} \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \left| \mathcal{M}_{1\to 2} \right|^{2}$$

A. Dedes I. Giomataris, K. Suxho, J.D. Vergados, J. Kopp, V. Niro, T. Schwetz, J. Zupan, 0907.3159 R. Essig, J. Mardon, T. Volansky, 1108.5383, R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, 1206.2644

- The velocity dependence can be integrated out

Dark photon model, SI and SD interactions, etc.

- A. Dedes I. Giomataris, K. Suxho, J.D. Vergados, 0907.0758
- J. Kopp, V. Niro, T. Schwetz, J. Zupan, 0907.3159
- R. Essig, J. Mardon, T. Volansky, 1108.5383,
- R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, T. Volansky, 1206.2644

 $F_{\text{DM}}(q) = \mathcal{M}(q)/\mathcal{M}(q = \alpha m_e)$ $f_{1\to2}(\mathbf{q}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \tilde{\psi}_2^*(\mathbf{k} + \mathbf{q}) \tilde{\psi}_1(\mathbf{k}),$ $|f_{\text{ion}}^{n\ell}(q)|^2 \propto \sum |f_{1\to2}(\mathbf{q})|^2$ l'm'm $\eta(v_{\min}) \equiv \left[d^3 \overrightarrow{v} f_{\chi}(\overrightarrow{v}) \frac{1}{v} \Theta(v - v_{\min}) \right]$

Only one atomic response function (or K-factor) is used to describe the atom effect

How about the general case?

To be as general as possible, we focus on the EFT approach

NR operators

- Small momentum transfer q
- Rotational and Galilean invariance:

 $\{\mathbb{1}_e, oldsymbol{S}_e\} \otimes \{\mathbb{1}_x, oldsymbol{S}_x, oldsymbol{ ilde{S}}_x\} \otimes \{ioldsymbol{q}, oldsymbol{v}_{ ext{el}}^{\perp}\}$

- Works well for the DM-nucleus scattering
- Relativistic correction could be important for the DM-electron scattering

- J. Fan, M. Reece, L.-T. Wang, 1008.1591
- R. Catena, K. Fridell, M. B. Kraus, 1907.02910

NR operators	Power counting	DM type		
NIC OPERATORS	1 ower counting	scalar	fermion	veo
$\mathcal{O}_1 = \mathbb{1}_x \mathbb{1}_e$	1	~	~	
$\mathcal{O}_3 = \mathbbm{1}_x \left(rac{\imath oldsymbol{q}}{\imath oldsymbol{v}_e} imes oldsymbol{v}_{ m el}^\perp ight) \cdot oldsymbol{S}_e$	qv	~	~	
$\mathcal{O}_4 = \mathbf{S}_x \cdot \mathbf{S}_e$ SD	1	_	~	,
$\mathcal{O}_5 = oldsymbol{S}_x \cdot \left(rac{ioldsymbol{q}}{m_e} imes oldsymbol{v}_{ ext{el}}^{\perp} ight) 1\!\!1_e$	qv	_	~	,
$\mathcal{O}_6 = \left(oldsymbol{S}_x \cdot rac{oldsymbol{q}}{m_e} ight) \left(rac{oldsymbol{q}}{m_e} \cdot oldsymbol{S}_e ight)$	q^2	_	~	,
$\mathcal{O}_7 = 1\!\!1_x oldsymbol{v}_{ ext{el}}^\perp \cdot oldsymbol{S}_e$	v	~	~	
$\mathcal{O}_8 = oldsymbol{S}_x \cdot oldsymbol{v}_{ ext{el}}^\perp 1\!\!1_e$	v	_	~	
$\mathcal{O}_9 = - oldsymbol{S}_x \cdot \left(rac{ioldsymbol{q}}{m_e} imes oldsymbol{S}_e ight)$	q	_	~	,
$\mathcal{O}_{10} = 1\!\!1_x rac{i oldsymbol{q}}{m_e} \cdot oldsymbol{S}_e$	q	~	\checkmark	
$\mathcal{O}_{11} = oldsymbol{S}_x \cdot rac{ioldsymbol{q}}{m_e} \mathbb{1}_e$	q	_	~	
$\mathcal{O}_{12} = -oldsymbol{S}_x \cdot (oldsymbol{v}_{ ext{el}}^{\perp} imes oldsymbol{S}_e)$	v	_	~	,
$\mathcal{O}_{13} = \left(oldsymbol{S}_x \cdot oldsymbol{v}_{ ext{el}}^{\perp} ight) \left(rac{ioldsymbol{q}}{m_e} \cdot oldsymbol{S}_e ight)$	qv	_	\checkmark	
$\mathcal{O}_{14} = (oldsymbol{S}_x \cdot rac{ioldsymbol{q}}{m_e})(oldsymbol{v}_{ ext{el}}^{\perp} \cdot oldsymbol{S}_e)$	qv	_	~	
$\mathcal{O}_{15} = oldsymbol{S}_x \cdot rac{oldsymbol{q}}{m_e} \left[rac{oldsymbol{q}}{m_e} \cdot (oldsymbol{v}_{ ext{el}}^{\perp} imes oldsymbol{S}_e) ight]$	$q^2 v$	_	~	
$\mathcal{O}_{17} = rac{ioldsymbol{q}}{m_e} \cdot oldsymbol{ ilde{\mathcal{S}}}_x \cdot oldsymbol{v}_{ ext{el}}^\perp 1\!\!1_e$	qv	_	_	
$\mathcal{O}_{18} = rac{i oldsymbol{q}}{m_e} \cdot oldsymbol{ ilde{\mathcal{S}}}_x \cdot oldsymbol{S}_e$	q	_	_	
$\mathcal{O}_{19} = rac{q}{m_e} \cdot ilde{oldsymbol{\mathcal{S}}}_x \cdot rac{q}{m_e} \mathbb{1}_e$	q^2	_	—	
$\mathcal{O}_{20} = -rac{q}{m_e}\cdot oldsymbol{ ilde{\mathcal{S}}}_x \cdot \left(rac{q}{m_e} imes oldsymbol{S}_e ight)$	q^2	_	_	
$\mathcal{O}_{21} = oldsymbol{v}_{ ext{el}}^{\perp} \cdot oldsymbol{ ilde{\mathcal{S}}}_x \cdot oldsymbol{S}_e$	v	_	_	
$\mathcal{O}_{22} = \left(rac{im{q}}{m_e} imes m{v}_{ ext{el}}^{\perp} ight) \cdot ilde{m{\mathcal{S}}}_x \cdot m{S}_e + m{v}_{ ext{el}}^{\perp} \cdot ilde{m{\mathcal{S}}}_x \cdot \left(rac{im{q}}{m_e} imes m{S}_e ight)$	qv	_	_	
$\mathcal{O}_{23} = -rac{i oldsymbol{q}}{m_e} \cdot ilde{oldsymbol{\mathcal{S}}}_x \cdot (oldsymbol{v}_{ ext{el}}^{\perp} imes oldsymbol{S}_e)$	qv	_	_	
$\mathcal{O}_{24} = rac{oldsymbol{q}}{m_e} \cdot ilde{oldsymbol{\mathcal{S}}}_x \cdot \left(rac{oldsymbol{q}}{m_e} imes oldsymbol{v}_{ ext{el}}^{ot} ight)$	q^2v	—	-	,
$\mathcal{O}_{25} = \left(rac{oldsymbol{q}}{m_e} \cdot ilde{oldsymbol{\mathcal{S}}}_x \cdot oldsymbol{v}_{ ext{el}}^{\perp} ight) \left(rac{oldsymbol{q}}{m_e} \cdot oldsymbol{S}_e ight)$	$q^2 v$	—	-	
$\mathcal{O}_{26} = \left(rac{oldsymbol{q}}{m_e} \cdot oldsymbol{ ilde{\mathcal{S}}}_x \cdot rac{oldsymbol{q}}{m_e} ight) (oldsymbol{v}_{ ext{el}}^\perp \cdot oldsymbol{S}_e)$	$q^2 v$	_	_	,

tor
(
(
(
(
(
(
(
(
/
· /
/ /
(
(
(
(
(
(
(
(
(
(
(
(
(

8

Calculation of matrix element squared — method 1

Catena et al., Phys. Rev. Res. 2, 033195 (2020) (110+ citations)

 $\mathbf{v}_{\rm el}^{\perp} = \mathbf{v} - \mathbf{q}/(2\mu_{xe}) - \mathbf{k}/m_e$ $\mathbf{v}_0^{\perp} \equiv \mathbf{v} - \mathbf{q}/(2\mu_{xe})$

 $\mathcal{M}_{1\to 2} = f_{1\to 2}(\mathbf{q})\mathcal{M}(\mathbf{q}, \mathbf{v}_0^{\perp}) + \mathbf{f}_{1\to 2}(\mathbf{q}) \cdot \nabla_{\mathbf{k}}\mathcal{M}(\mathbf{q}, \mathbf{v}_{el}^{\perp})$

DM response functions

1 usual $|f_{ion}^{n\ell}(q)|^2$ + 3 new atomic response functions

• A crucial minus sign is missed from *p*-space to *x*-space

$$\mathbf{f}_{1\to 2}(\mathbf{q}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \tilde{\psi}_2^* (\mathbf{k} + \mathbf{q}) \frac{\mathbf{k}}{m_e} \tilde{\psi}_1(\mathbf{k})$$

counting is not obvious

Catena et al., Phys. Rev. Res. 2, 033195 (2020)

$$\rightarrow \mathbf{f}_{1\to 2}(\mathbf{q}) = \int d^3 \mathbf{r} \, \psi_2^*(\mathbf{r}) e^{i\mathbf{q}\cdot\mathbf{r}} \frac{-i\nabla}{m_e} \psi_1(\mathbf{r})$$

Will affect all operators containing \mathbf{v}_{el}^{\perp} and lead to almost an order of magnitude difference for the rate

• The DM response functions Rs also contain atomic information and the power

10

Calculation of matrix element squared—our method arXiv: 2405. 04855 **Free electron case** $\mathscr{M}(\mathbf{q},\mathbf{v}_{\mathrm{el}}^{\perp}) = \mathscr{M}(\mathbf{q},0) + \mathbf{v}_{\mathrm{el}}^{\perp} \cdot \nabla_{\mathbf{v}_{\mathrm{el}}^{\perp}} \mathscr{M}(\mathbf{q},\mathbf{v}_{\mathrm{el}}^{\perp})$ **Bound electron case** $f_{\rm S}(\mathbf{q}) \equiv f_{1 \rightarrow 2}(\mathbf{q})$ $\mathbf{f}_{\mathrm{V}}(\mathbf{q}) \equiv \mathbf{v}_{0}^{\perp} f_{1 \to 2}(\mathbf{q}) - \mathbf{f}_{1 \to 2}(\mathbf{q})$ $\mathcal{M}_{1 \to 2} = f_{\mathrm{S}}(\mathbf{q}) \mathcal{M}_{\mathrm{S}} + \mathbf{f}_{\mathrm{V}}(\mathbf{q}) \cdot \mathbf{M}_{\mathrm{V}}$ $\overline{\left|\mathcal{M}_{1\to2}\right|^{2}} = a_{0}\left|f_{S}\right|^{2} + a_{1}\left|\mathbf{f}_{V}\right|^{2} + \frac{a_{2}}{x_{e}}\left|\frac{\mathbf{q}}{m_{e}}\cdot\mathbf{f}_{V}\right|^{2} + ia_{3}\frac{\mathbf{q}}{m_{e}}\cdot(\mathbf{f}_{V}\times\mathbf{f}_{V}^{*}) + 2\Im\left[a_{4}f_{S}\mathbf{f}_{V}^{*}\cdot\frac{\mathbf{q}}{m_{e}}\right]$ Due to the property of atomic wave functions $\left| \frac{\mathscr{M}_{\text{ion}}^{n\ell}}{\mathscr{I}_{\text{ion}}} \right|^{2} \equiv \frac{4Vk^{\prime 3}}{(2\pi)^{2}} \sum_{k=1}^{\ell} \sum_{k=1}^{\infty} \sum_{k=1}^{\ell} \sum_{k=1}^{\infty} \frac{\ell^{\prime}}{2} \sum_{k=1}^{\infty} \frac{\ell^{\prime}}{2} \sum_{k=1}^{\ell} \frac{\ell^$ $\equiv \frac{1}{(2\pi)^3} \sum_{m=-\ell} \sum_{\ell'=0} \sum_{m'=-\ell'} \left| \mathcal{M}_{1\to 2} \right|^2 = a_0 \widetilde{W}_0 + a_1 \widetilde{W}_1 + a_2 \widetilde{W}_2$

11

The merit of our approach

Correctly incorporate the minus sign

Only three atomic response functions

The minus sign leads to a strong cancellation among W_2 and $W_{3,4}$

DM response functions

DM response functions

$1^{ ^2 + \frac{1}{4} c_{10} ^2 x_e}$ • Usual SI and SD intereactions
$ c_7 ^2 + \frac{1}{4} c_3 ^2 x_e$
$\frac{1}{4} c_3 ^2 \mathbf{x}_e$ Only $W_1(W_0)$ is enough
${}_{1} ^{2} + rac{3}{16} c_{4} ^{2} + \left(rac{1}{8} c_{9} ^{2} + rac{1}{4} c_{10} ^{2} + rac{1}{4} c_{11} ^{2} + rac{1}{8}\Re[c_{4}c_{6}^{*}] ight) oldsymbol{x}_{e} + rac{1}{16} c_{6} ^{2}oldsymbol{x}_{e}^{2}$
$ c_{7} ^{2} + \frac{1}{4} c_{8} ^{2} + \frac{1}{8} c_{12} ^{2} + \left(\frac{1}{4} c_{3} ^{2} + \frac{1}{4} c_{5} ^{2} + \frac{1}{16} c_{13} ^{2} + \frac{1}{16} c_{14} ^{2} - \frac{1}{8}\Re[c_{12}c_{14}^{*}]^{2} + \frac{1}{16} c_{14} ^{2} + \frac{1}{16} c_{14} $
$ c_{15} ^2 x_e^2$
$\left(\tfrac{1}{4} c_3 ^2 + \tfrac{1}{4} c_5 ^2 - \tfrac{1}{8}\Re[c_{12}c_{15}^*] - \tfrac{1}{8}\Re[c_{13}c_{14}^*]\right) \textbf{\textit{x}_e} - \tfrac{1}{16} c_{15} ^2 \textbf{\textit{x}_e^2}$
$ _{1}^{2} + \frac{1}{2} c_{4} ^{2} + \left(\frac{1}{3} c_{9} ^{2} + \frac{1}{4} c_{10} ^{2} + \frac{2}{3} c_{11} ^{2} + \frac{5}{36} c_{18} ^{2} + \frac{1}{3}\Re[c_{4}c_{6}^{*}] ight) \boldsymbol{x}_{e}$
$ c_6 ^2 + rac{2}{9} c_{19} ^2 + rac{1}{12} c_{20} ^2) x_e^2$
$ c_{7} ^{2} + \frac{2}{3} c_{8} ^{2} + \frac{1}{3} c_{12} ^{2} + \frac{5}{36} c_{21} ^{2} + \left(\frac{1}{4} c_{3} ^{2} + \frac{2}{3} c_{5} ^{2} + \frac{1}{6} c_{13} ^{2} + \frac{1}{6} c_{14} ^{2} + \frac{1}{6$
$c_{22} ^{2} + \frac{7}{72} c_{23} ^{2} - \frac{1}{3}\Re[c_{12}c_{15}^{*}] + \frac{1}{12}\Re[c_{21}c_{25}^{*}] - \frac{1}{18}\Re[c_{21}c_{26}^{*}] + \frac{1}{12}\Re[c_{22}c_{23}^{*}]\big) x$
$ c_{15} ^2 + rac{1}{6} c_{24} ^2 + rac{1}{24} c_{25} ^2 + rac{1}{18} c_{26} ^2 ig) x_e^2$
$\left(\frac{1}{4} c_3 ^2 + \frac{2}{3} c_5 ^2 - \frac{1}{18} c_{17} ^2 + \frac{7}{24} c_{22} ^2 + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{12}c_{15}^*] - \frac{1}{3}\Re[c_{13}c_{14}^*] + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{12}c_{15}^*] - \frac{1}{3}\Re[c_{13}c_{14}^*] + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{13}c_{15}^*] - \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{13}c_{15}^*] - \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{72} c_{13} ^2 + \frac{1}{72} c_{23} ^2 - \frac{1}{3}\Re[c_{13}c_{15}^*] + \frac{1}{72} c_{13} ^2 + \frac{1}$
$\Re[c_{21}c_{25}^*] - \frac{1}{6}\Re[c_{21}c_{26}^*] + \frac{1}{4}\Re[c_{22}c_{23}^*] x_e = \chi_{0} = \chi_{0}$
$\left c_{15} ^2 + rac{1}{6} c_{24} ^2 - rac{1}{72} c_{25} ^2 - rac{1}{9}\Re[c_{25}c_{26}^*] ight) x_e^2$

Example: contributions from different response functions for \mathcal{O}_7

Revisited event rate from \mathcal{O}_7

XENON1T SE constraints on EM form factors of DM

XENON Collaboration, 2112.12116

$a_{\chi}(\overline{\chi}\gamma^{\mu}\gamma_{5}\chi)\partial^{\nu}F_{\mu\nu} \to 8a_{\chi}e\,m_{\chi}m_{e}\,(\mathcal{O}_{8}-\mathcal{O}_{9})$

The constraint on the anapole operator greatly affected by the new atomic response functions

Revisited constraints on the anapole operator $a_{\gamma}(\overline{\chi}\gamma^{\mu}\gamma_{5}\chi)\partial^{\nu}F_{\mu\nu} \to 8a_{\gamma}e\,m_{\gamma}m_{e}\left(\mathcal{O}_{8}-\mathcal{O}_{9}\right)$ 10^{2} XENON10 XENON1T-S2 XENON1T-SE PandaX-4T 10 is corrected. Catena *et al.*, 2020 $[GeV^{-2}]$ Catena *et al.*, 2020 **XENON** Collaboration g/Λ^2 10^{-1} $m_{\chi} \gtrsim 20 \text{ MeV}$ $\frac{g}{2\Lambda^2}\bar{\chi}\gamma^{\mu}\gamma_5\chi\partial^{\nu}F_{\mu\nu}$ 10^{-2} L 10^{-2} 10^{-1} $m_{\chi} \,[{\rm GeV}]$

Constraints on non-relativistic interactions

$$\frac{\mathrm{d}N_s}{\mathrm{d}N_{\mathrm{PE}}} = \epsilon \,\omega \,\frac{1}{m_T} \sum_{n\,\ell} \sum_{n\,\ell} \sum_{n_e=1}^{\infty} \frac{\mathrm{d}\mathcal{R}_{\mathrm{ion}}^{n\ell}}{\mathrm{d}n_e} P(N_{\mathrm{PE}}|n_e)$$

XENON10 collaboration, 1104.3088 XENON collaboration, 1907.11485] PandaX collaboration, 2212.10067

Using S2-only data from xenon experiments, including XENON10, XENON1T, and PandaX-4T

12 independent constraints

Class	Chosen one	Scalar DM (c_i^s)	Fermion DM (c_i^f)	Vector DM (c_i^{v})	RFs	
	$x_e^0:c_1^{\tt v}$	$c_1^{\mathbf{s}} = c_1^{\mathbf{v}}$	$c_{1,4}^{\mathrm{f}} = \left(1, \sqrt{\tfrac{16}{3}}\right) c_1^{\mathrm{v}}$	$c_4^{\rm v}=\sqrt{2}c_1^{\rm v}$	\widetilde{W}_0	Velocity-independent
a_0	$x_e^1:c_{10}^{\mathtt{v}}$	$c_{10}^{\mathbf{s}}=c_{10}^{\mathbf{v}}$	$c_{9,10,11}^{\rm f} = (\sqrt{2},1,1)c_{10}^{\rm v}$	$c_{9,11,18}^{\texttt{v}} = \left(\sqrt{\frac{3}{4}}, \sqrt{\frac{3}{8}}, \sqrt{\frac{9}{5}}\right) c_{10}^{\texttt{v}}$	$\frac{1}{4}\widetilde{W}_0$	
	$x_e^2:c_6^{\tt v}$	—	$c_6^{\rm f}=\sqrt{\tfrac{8}{3}}c_6^{\rm v}$	$c^{\mathtt{v}}_{19,20} = \left(\sqrt{\tfrac{3}{4}},\sqrt{2}\right)c^{\mathtt{v}}_6$	$\frac{1}{6}\widetilde{W}_0$	
	$x_e^0:c_7^{\mathtt{v}}$	$c_7^{\rm s}=c_7^{\rm v}$	$c_{7,8,12}^{\rm f} = (1,1,\sqrt{2})c_7^{\rm v}$	$c_{8,12,21}^{\tt v} = \left(\sqrt{\tfrac{3}{8}}, \sqrt{\tfrac{3}{4}}, \sqrt{\tfrac{9}{5}}\right) c_7^{\tt v}$	$\frac{1}{4}\widetilde{W}_1$	
	$x_e^1:c_3^{\tt v}$	$c_3^{\mathbf{s}}=c_3^{\mathbf{v}}$	$c_{3,5}^{\rm f} = (1,1) c_3^{\rm v}$	$c^{\mathtt{v}}_5=\sqrt{rac{3}{8}}c^{\mathtt{v}}_3$	$\frac{1}{4}(\widetilde{W}_1 - \widetilde{W}_2)$	
	$x_e^1:c_{13}^{\mathtt{v}}$		$c_{13,14}^{\mathrm{f}} = \left(\sqrt{\tfrac{8}{3}}, \sqrt{\tfrac{8}{3}}\right) c_{13}^{\mathrm{v}}$	$c^{\mathtt{v}}_{14}=c^{\mathtt{v}}_{13}$	$\frac{1}{6}\widetilde{W}_1$	
	$x_e^2:c_{15}^{\mathtt{v}}$	_	$c_{15}^{\mathrm{f}} = \sqrt{\tfrac{8}{3}} c_{15}^{\mathrm{v}}$	$c_{24}^{\mathtt{v}}=c_{15}^{\mathtt{v}}$	$\frac{1}{6}(\widetilde{W}_1 - \widetilde{W}_2)$	Velocity-dependent
$a_{1,2}$	$x_e^1:c_{17}^{\mathtt{v}}$	_	_	\checkmark	$\frac{1}{18}(3\widetilde{W}_1 + \widetilde{W}_2)$	
	$x_e^1:c_{22}^{\mathtt{v}}$	_	_	\checkmark	$\frac{1}{24}(9\widetilde{W}_1 - 7\widetilde{W}_2)$	
	$x_e^1:c_{23}^{\mathtt{v}}$		_	\checkmark	$\frac{1}{72}(7\widetilde{W}_1 - \widetilde{W}_2)$	
	$x_e^2:c_{25}^{\mathtt{v}}$	_	_	\checkmark	$\frac{1}{72}(3\widetilde{W}_1 + \widetilde{W}_2)$	
	$x_e^2:c_{26}^{\mathtt{v}}$	an by the suffer so construction of the by the			$\frac{1}{18}\widetilde{W}_1$	

Constraints on the NR operators

SD \rightarrow LD : $c_i \rightarrow c_i (\alpha_{\rm em} m_e)^2 / \mathbf{q}^2$

- The constriants follows consistently with the power counting of q and/or v
- The suppression from v is comparable with that from q
- $q/v \rightarrow \mathcal{O}(10^{-1})$

th the power counting of q and/or v with that from q

PandaX-4T sets the most stringent constraints when $m_X \gtrsim 20 \text{ MeV}$

22

Constraints on the relativistic operators

Scalar and fermion DM cases

Dim	Relativistic operators	NR reduction		
Scalar case				
dim-5	$\mathcal{O}^S_{\ell\phi} = (\overline{\ell}\ell)(\phi^\dagger\phi)$	$2m_e\mathcal{O}_1$		
	$\mathcal{O}^P_{\ell\phi} = (\overline{\ell} i \gamma_5 \ell) (\phi^\dagger \phi)$	$-2m_e\mathcal{O}_{10}$		
dim-6	$\mathcal{O}_{\ell\phi}^{V} = (\overline{\ell}\gamma^{\mu}\ell)(\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi)(\times)$	$4m_em_\phi \mathcal{O}_1$		
	$\mathcal{O}^{A}_{\ell\phi} = (\overline{\ell}\gamma^{\mu}\gamma_{5}\ell)(\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi)(imes)$	$-8m_em_\phi\mathcal{O}_7$		
	$\mathcal{L}_{\phi}^{Q} = (\partial_{\mu} - iQ_{\phi}eA_{\mu})\phi ^{2}(imes)$	$-4Q_{\phi}e^2rac{m_em_{\phi}}{oldsymbol{q}^2}\mathcal{O}_1$		
	$\mathcal{L}_{\phi}^{\mathrm{cr}} = b_{\phi}(\phi^{\dagger}i\overleftrightarrow{\partial^{\mu}}\phi)\partial^{\nu}F_{\mu\nu}\left(\times\right)$	$4b_{\phi}em_{e}m_{\phi}\mathcal{O}_{1}$		
Fermion case				
	$\mathcal{O}^{S}_{\ell\chi 1} = (\overline{\ell}\ell)(\overline{\chi}\chi)$	$4m_em_\chi {\cal O}_1$		
	$\mathcal{O}_{\ell\chi 2}^{\widehat{S}} = (\overline{\ell}\ell)(\overline{\chi}i\gamma_5\chi)$	$4m_e^2 {\cal O}_{11}$		
	$\mathcal{O}_{\ell\chi1}^{\widehat{P}} = (\overline{\ell}i\gamma_5\ell)(\overline{\chi}\chi)$	$-4m_em_\chi {\cal O}_{10}$		
	$\mathcal{O}^P_{\ell\chi 2} = (\overline{\ell} i \gamma_5 \ell) (\overline{\chi} i \gamma_5 \chi)$	$4m_e^2 \mathcal{O}_6$		
dim-6	$\mathcal{O}_{\ell\chi1}^{V} = (\bar{\ell}\gamma^{\mu}\ell)(\bar{\chi}\gamma_{\mu}\chi)(\times)$	$4m_em_\chi {\cal O}_1$		
	$\mathcal{O}_{\ell\chi2}^V = (\overline{\ell}\gamma^\mu\ell)(\overline{\chi}\gamma_\mu\gamma_5\chi)$	$8m_em_\chi(\mathcal{O}_8-\mathcal{O}_9)$		
	$\mathcal{O}^{A}_{\ell\chi1} = (\overline{\ell}\gamma^{\mu}\gamma_{5}\ell)(\overline{\chi}\gamma_{\mu}\chi)(\times)$	$-8m_e(m_\chi {\cal O}_7+m_e {\cal O}_9)$		
	$\mathcal{O}^{A}_{\ell\chi2} = (\ell\gamma^{\mu}\gamma_{5}\ell)(\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)$	$-16m_em_\chi {\cal O}_4$		
	$\mathcal{O}_{\ell\chi1}^{T} = (\ell \sigma^{\mu\nu} \ell) (\overline{\chi} \sigma_{\mu\nu} \chi) (\times)$	$32m_em_\chi {\cal O}_4$		
	$\mathcal{O}_{\ell\chi2}^{T} = (\ell \sigma^{\mu\nu} \ell) (\overline{\chi} i \sigma_{\mu\nu} \gamma_5 \chi) (\times)$	$8m_e(m_e \mathcal{O}_{10} - m_\chi \mathcal{O}_{11} - 4m_\chi \mathcal{O}_{12})$		
	$\mathcal{L}_{\chi}^{Q} = \overline{\chi} i \gamma^{\mu} (\partial_{\mu} - i Q_{\chi} e A_{\mu}) \chi (\times)$	$-4Q_{\chi}e^2 \frac{m_e m_{\chi}}{q^2} \mathcal{O}_1$		
	$\mathcal{L}_{\chi}^{\mathrm{mdm}} = \mu_{\chi}(\overline{\chi}\sigma^{\mu\nu}\chi)F_{\mu\nu}(\times)$	$4\mu_{\chi}e\left(m_{e}\mathcal{O}_{1}+4m_{\chi}\mathcal{O}_{4}+\frac{4m_{e}^{2}m_{\chi}}{q^{2}}\left(\mathcal{O}_{5}-\mathcal{O}_{6}\right)\right)$		
	$\mathcal{L}_{\chi}^{\text{edm}} = d_{\chi} (\overline{\chi} i \sigma^{\mu\nu} \gamma_5 \chi) F_{\mu\nu} (\times)$	$d_{\chi}erac{16m_e^2m_{\chi}}{oldsymbol{q}^2}\mathcal{O}_{11}$		
	$\mathcal{L}_{\chi}^{\mathrm{cr}} = b_{\chi}(\overline{\chi}\gamma^{\mu}\chi)\partial^{\nu}F_{\mu\nu}\left(\times\right)$	$4b_{\chi}em_em_{\chi}{\cal O}_1$		
	$\mathcal{L}_{\chi}^{ ext{anap.}} = a_{\chi}(\overline{\chi}\gamma^{\mu}\gamma_5\chi)\partial^{ u}F_{\mu u}$	$8a_{\chi}em_em_{\chi}\left(\mathcal{O}_8-\mathcal{O}_9 ight)$		

$$egin{aligned} &u^s(m{p}) = rac{1}{\sqrt{4m}} \begin{pmatrix} (2m - m{p} \cdot m{\sigma}) \xi^s \ (2m + m{p} \cdot m{\sigma}) \xi^s \end{pmatrix} + \mathcal{O}(m{p}^2), \ &\xi^{s'\dagger} \xi^s o \mathbf{I}, \quad \xi^{s'\dagger} rac{m{\sigma}}{2} \xi^s o m{S}, \end{aligned}$$

Dim	Relativistic operators NR reduction		Vector case B	
	Vector case A		$\tilde{\mathcal{O}}^{\rm S}_{\ell X 1} = (\bar{\ell}\ell) X^{\dagger}_{\mu\nu} X^{\mu\nu}$	$4m_em_X^2O_1$
dim-5	$\mathcal{O}^{\mathrm{S}}_{\ell X} = (\overline{\ell}\ell)(X^{\dagger}_{\mu}X^{\mu})$	$-2m_e\mathcal{O}_1$	$\widetilde{\mathcal{O}}^{\rm S}_{\ell X 2} = (\overline{\ell} \ell) X^{\dagger}_{\mu \nu} \tilde{X}^{\mu \nu}$	$4m_e^2m_X\mathcal{O}_{11}$
	$\mathcal{O}_{\ell X}^{\mathrm{P}} = (\bar{\ell} i \gamma_5 \ell) (X_{\mu}^{\dagger} X^{\mu})$	$2m_e \mathcal{O}_{10}$	$\mathcal{\tilde{O}}_{\ell X1}^{\mathbf{P}} = (\bar{\ell} i \gamma_5 \ell) X_{\mu\nu}^{\dagger} X^{\mu\nu}$	$-4m_em_X^2\mathcal{O}_{10}$
uiii-0	$\mathcal{O}_{\ell X1}^{\mathrm{T}} = \frac{i}{2} (\overline{\ell} \sigma^{\mu\nu} \ell) (X_{\mu}^{\dagger} X_{\nu} - X_{\nu}^{\dagger} X_{\mu}), (\times)$	$-4m_e\mathcal{O}_4$	$\tilde{\mathcal{O}}^{\mathrm{P}}_{\ell X 2} = (\bar{\ell} i \gamma_5 \ell) X^{\dagger}_{\mu \nu} \tilde{X}^{\mu \nu}$	$4m_e^2m_X\mathcal{O}_6$
	$\mathcal{O}_{\ell X2}^{\mathrm{T}} = \frac{1}{2} (\bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell) (X_{\mu}^{\dagger} X_{\nu} - X_{\nu}^{\dagger} X_{\mu}), (\times)$	$-m_e \left(\mathcal{O}_{11} + 4\mathcal{O}_{12} \right) + 4 \frac{m_e^2}{m_X} \left(\frac{1}{3}\mathcal{O}_{10} - \mathcal{O}_{18} \right)$	$\tilde{\mathcal{O}}_{\ell X1}^{T} = \frac{i}{2} (\bar{\ell} \sigma^{\mu\nu} \ell) (X_{\mu\rho}^{\dagger} X_{\nu}^{\rho} - X_{\nu\rho}^{\dagger} X_{\mu}^{\rho}), (\times)$	$4m_em_X^2\mathcal{O}_4$
	$\mathcal{O}_{\ell X 1}^{\mathtt{V}} = \frac{1}{2} [\overline{\ell} \gamma_{(\mu} i \overleftrightarrow{D_{\nu}}) \ell] (X^{\mu \dagger} X^{\nu} + X^{\nu \dagger} X^{\mu})$	$m_e^2 \mathcal{O}_1$	$\tilde{\mathcal{O}}_{\ell X2}^{T} = \frac{1}{2} (\bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell) (X_{\mu\rho}^{\dagger} X_{\nu}^{\rho} - X_{\nu\rho}^{\dagger} X_{\mu}^{\rho}), (\times)$	$\frac{1}{3}m_e m_X \left[3m_X (\mathcal{O}_{11} + 4\mathcal{O}_{12}) - 4m_e (2\mathcal{O}_{10}) \right]$
	$\mathcal{O}_{\ell X 2}^{\mathtt{V}} = (\bar{\ell} \gamma_{\mu} \ell) \partial_{\nu} (X^{\mu \dagger} X^{\nu} + X^{\nu \dagger} X^{\mu})$	$-4m_e^2\left(\mathcal{O}_{17}+\mathcal{O}_{20} ight)+rac{4}{3}m_e(ioldsymbol{q}\cdotoldsymbol{v}_{ ext{el}}^{\perp})\mathcal{O}_1$	$\tilde{\mathcal{O}}_{X\gamma1} = i(X^{\dagger}_{\mu\rho}X^{\rho}_{\nu} - X^{\dagger}_{\nu\rho}X^{\rho}_{\mu})F^{\mu\nu}(\times)$	$2e \left[\frac{2}{3}m_X(m_e + m_X)O_1 + 2m_X^2O_1 + 2m_X^2O$
	$\mathcal{O}_{\ell X3}^{V} = (\bar{\ell}\gamma_{\mu}\ell)(X_{\rho}^{\dagger}\overleftarrow{\partial_{\nu}}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}$	$-4m_em_X\left(\mathcal{O}_8-\mathcal{O}_9\right)$		$+\frac{1}{q^2}\left(2m_e^2m_X^2(\mathcal{O}_5-\mathcal{O}_6)-2m_e^2m_X(m_X-m_X)\right)$
	$\mathcal{O}_{\ell X 4}^{V} = (\bar{\ell} \gamma^{\mu} \ell) (X_{\nu}^{\dagger} i \overline{\partial_{\mu}} X^{\nu}), (\times)$	$-4m_em_X\mathcal{O}_1$	$\tilde{\mathcal{O}}_{X\gamma2} = i(X^{\dagger}_{\mu\rho}X^{\rho}_{\nu} - X^{\dagger}_{\mu\rho}X^{\rho}_{\mu})\tilde{F}^{\mu\nu}(\times)$	$-4em_e^2 m_X^2 \frac{1}{a^2} \mathcal{O}_{11}$
dim-6	$\mathcal{O}_{\ell X5}^{V} = (\bar{\ell}\gamma_{\mu}\ell)i\partial_{\nu}(X^{\mu\dagger}X^{\nu} - X^{\nu\dagger}X^{\mu}), (\times)$	$2m_e^2\left(\mathcal{O}_5-\mathcal{O}_6-rac{m_e}{m_X}\mathcal{O}_{19} ight)+2oldsymbol{q}^2\mathcal{O}_4+rac{2}{3}rac{m_e}{m_X}oldsymbol{q}^2\mathcal{O}_1$		C A 42
	$\mathcal{O}_{\ell X 6}^{V} = (\bar{\ell} \gamma_{\mu} \ell) i \partial_{\nu} (X_{\rho}^{\dagger} X_{\sigma}) \epsilon^{\mu \nu \rho \sigma}, (\times)$	$-2m_e^2\mathcal{O}_{11}$		
	$\mathcal{O}^{A}_{\ell X 1} = \frac{1}{2} [\bar{\ell} \gamma_{(\mu} \gamma_5 i \overleftrightarrow{D_{\nu}}) \ell] (X^{\mu \dagger} X^{\nu} + X^{\nu \dagger} X^{\mu})$	$-2m_e^2\left(rac{m_e}{m_X}\mathcal{O}_9-4\mathcal{O}_{21}+rac{4}{3}\mathcal{O}_7 ight)$		
	$\mathcal{O}^{\mathtt{A}}_{\ell X 2} = (\bar{\ell} \gamma_{\mu} \gamma_{5} \ell) \partial_{\nu} (X^{\mu \dagger} X^{\nu} + X^{\nu \dagger} X^{\mu})$	$-8m_e^2\left(rac{1}{3}\mathcal{O}_{10}-\mathcal{O}_{18} ight)$		
	$\mathcal{O}^{\mathtt{A}}_{\ell X3} = (\bar{\ell} \gamma_{\mu} \gamma_{5} \ell) (X^{\dagger}_{\rho} \overleftrightarrow{\partial_{\nu}} X_{\sigma}) \epsilon^{\mu \nu \rho \sigma}$	$8m_em_X\mathcal{O}_4$		
	$\mathcal{O}_{\ell X 4}^{\mathtt{A}} = (\bar{\ell} \gamma^{\mu} \gamma_5 \ell) (X_{\nu}^{\dagger} i \overleftrightarrow{\partial_{\mu}} X^{\nu}) \qquad 8 m_e m_X \mathcal{O}_7$		All possible leading-o	rder vector DM opera
	$\mathcal{O}^{A}_{\ell X5} = (\bar{\ell} \gamma_{\mu} \gamma_{5} \ell) i \partial_{\nu} (X^{\mu \dagger} X^{\nu} - X^{\nu \dagger} X^{\mu}), (\times)$	$4m_e^2 \mathcal{O}_9$	All possible leading-o	
	$\mathcal{O}^{\mathrm{A}}_{\ell X 6} = (\bar{\ell} \gamma_{\mu} \gamma_{5} \ell) i \partial_{\nu} (X^{\dagger}_{\rho} X_{\sigma}) \epsilon^{\mu \nu \rho \sigma}, (\times)$	$4m_e^2\left(\mathcal{O}_{14}-\frac{m_e}{m_X}\mathcal{O}_{20}\right)$	coupling to electr	on and photon fields
	$\mathcal{L}_{\kappa_{\Lambda}} = i \frac{\kappa_{\Lambda}}{2} (X_{\mu}^{\dagger} X_{\nu} - X_{\nu}^{\dagger} X_{\mu}) F^{\mu\nu} (\times)$	$-2e\kappa_{\Lambda}\left[\frac{m_{e}}{m_{X}}\left(\frac{1}{3}\mathcal{O}_{1}-\frac{m_{e}^{2}}{q^{2}}\mathcal{O}_{19}\right)-\mathcal{O}_{4}-\frac{m_{e}^{2}}{q^{2}}\left(\mathcal{O}_{5}-\mathcal{O}_{6}\right)\right]$		
	$\mathcal{L}_{\tilde{\kappa}_{\Lambda}} = i \frac{\tilde{\kappa}_{\Lambda}}{2} (X_{\mu}^{\dagger} X_{\nu} - X_{\nu}^{\dagger} X_{\mu}) \tilde{F}^{\mu\nu} (\times)$	$2e ilde{\kappa}_{\Lambda}m_e^2rac{1}{q^2}\mathcal{O}_{11}$		
	$\mathcal{O}_{X\gamma 1} = \epsilon^{\mu\nu\rho\sigma} \left(X^{\dagger}_{\rho} \overleftrightarrow{\partial_{\nu}} X_{\sigma} \right) \partial^{\lambda} F_{\mu\lambda}$	$-4em_em_X\left(\mathcal{O}_8-\mathcal{O}_9 ight)$		
dim-6	$\mathcal{O}_{X\gamma2} = \epsilon^{\mu\nu\rho\sigma} i\partial_{\nu} \left(X^{\dagger}_{\rho} X_{\sigma} \right) \partial^{\lambda} F_{\mu\lambda} \left(\times \right)$	$-2em_e^2 \mathcal{O}_{11}$		
	$\mathcal{O}_{X\gamma3} = \left(X_{\nu}^{\dagger}i\overleftrightarrow{\partial^{\mu}}X^{\nu}\right)\partial^{\lambda}F_{\mu\lambda}$	$-4em_em_X\mathcal{O}_1$		
	$\mathcal{O}_{X\gamma4} = \partial_{\nu} (X^{\mu\dagger} X^{\nu} + X^{\nu\dagger} X^{\mu}) \partial^{\lambda} F_{\mu\lambda}$	$4e m_e \left[rac{1}{3} (i oldsymbol{q} \cdot oldsymbol{v}_{ ext{el}}^{\perp}) \mathcal{O}_1 - m_e \left(\mathcal{O}_{17} + \mathcal{O}_{20} ight) ight]$		
	$\mathcal{O}_{X\gamma5} = i\partial_{\nu}(X^{\mu\dagger}X^{\nu} - X^{\nu\dagger}X^{\mu})\partial^{\lambda}F_{\mu\lambda}(\times)$	$e\left[2m_e^2\left(\mathcal{O}_5-\mathcal{O}_6-rac{m_e}{m_X}\mathcal{O}_{19} ight)+2oldsymbol{q}^2\mathcal{O}_4+rac{2}{3}rac{m_e}{m_X}oldsymbol{q}^2\mathcal{O}_1 ight]$		

Vector DM case

Constraints on the scalar DM case

Constraints on the fermion DM EM property

Comporison with the NR data

• Complementarity

NR is sensitive for m_{χ} above a few GeVs ER is sensitive to m_{χ} below 10 GeV

- Generally, the NR constraints are stronger than those of ER.
- For millicharge and mdm, the ER constraint is comparable to that of NR

Constraints on the vector DM case

Some examples involving photon field

Different behavior due to different parametrization and DM mass dependence

> Become stronger as m_X increase

- We find a crucial minus sign was missed for W_2 in 1912.08204, which has significant phenomenological consequences on some specific DM scenarios.
- A more compact amplitude squared is provided for the general DM-electron interactions for three DM scenarios.
- A matching dictionary between the relativistic and NR operators is given.
- The constraints from the xenon target experiments were studied, and we find the PandaX-4T set the most stringent constraints on the effective operators when $m_{\rm DM} \gtrsim 20$ MeV.

Summary

Thanks for your attention!

