SMEFT at future lepton colliders with machine learning

Jiayin Gu (顾嘉荫)

Fudan University

International Workshop on New Opportunities for Particle Physics July 21, 2024

Jiayin Gu (顾嘉荫)

Fudan University

Why SMEFT at future lepton colliders?

- ► Build large colliders → go to high energy → discover new particles!
- Higgs and nothing else?
- What's next?
 - ► Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!

Why SMEFT at future lepton colliders?

- ► Build large colliders → go to high energy → discover new particles!
- Higgs and nothing else?
- What's next?
 - ► Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!
- \blacktriangleright Build large colliders \rightarrow do precision measurements \rightarrow probe new physics!
 - Higgs factory! (HL-LHC, or a future lepton collider)
 - Many other precision measurements! (Z, W, top, ...)
 - Standard Model Effective Field Theory (model independent approach)

To summarize in one sentence...

"Our future discoveries must be looked for in the sixth place of decimals."

- Albert A. Michelson

Jiayin Gu (顾嘉荫)

Fudan University

The Standard Model Effective Field Theory

- ▶ $[\mathcal{L}_{sm}] \leq 4$. Why?
 - Bad things happen when we have non-renormalizable operators!
 - Everything is fine as long as we are happy with finite precision in perturbative calculation.
- ► **d=5:** $\frac{c}{\Lambda}LLHH \sim \frac{cv^2}{\Lambda}\nu\nu$, Majorana neutrino mass.
- Assuming Baryon and Lepton numbers are conserved,

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\boldsymbol{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{\boldsymbol{c}_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

► If $\Lambda \gg v$, *E*, then **SM + dimension-6 operators** are sufficient to parameterize the physics around the electroweak scale.

X^3		φ^4 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		(LL)(LL)		$(\bar{R}R)(\bar{R}R)$		(LL)(RR)	
Qa	$f^{ABC}G^{A\nu}_{\nu}G^{S\mu}_{\nu}G^{C\mu}_{\nu}$	9,	(φ [†] φ) ³	Q.,	$(\varphi^{\dagger}\varphi)(\overline{l_{p}e_{r}}\varphi)$	Q_{k}	$(\bar{l}_{\rm f} \gamma_{\rm s} \bar{l}_{\rm r}) (\bar{l}_{\rm s} \gamma^{\mu} l_{\rm t})$	Q_{ee}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\tau})(\tilde{e}_{\nu}\gamma^{*}e_{\ell})$	Q_{1c}	$(\tilde{l}_{\mu}\gamma_{\mu}l_{\nu})(\tilde{e}_{\mu}\gamma^{\mu}e_{\mu})$
90	1 ABC GA GA GA GC	20	$(\varphi^{\dagger}\varphi) \Box (\varphi^{\dagger}\varphi)$	Que	$(\varphi^{\dagger}\varphi)(\bar{q}_{\mu}u_{\mu}\bar{\varphi})$	$Q_{m}^{(1)}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{q}_{\nu}\gamma^{\mu}q_{\nu})$	Q_{in}	$(\hat{u}_{\mu}\gamma_{\mu}v_{\nu})(\hat{u}_{e}\gamma^{\mu}s_{i})$	Q_{he}	$(\tilde{l}_p \gamma_p \tilde{l}_r)(\hat{u}_s \gamma^{\mu} u_t)$
Qu	SIJKWDWJeWKE	Que	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$	94	$(\varphi^{\dagger}\varphi)(\bar{q}_{s}d_{s}\varphi)$	$Q_{ii}^{(l)}$	$(\bar{q}_{\mu}\gamma_{\mu}\tau^{I}q_{\nu})(\bar{q}_{e}\gamma^{\mu}\tau^{I}q_{e})$	Q_{M}	$(\tilde{d}_{\mu}\gamma_{\mu}d_{r})(\tilde{d}_{e}\gamma^{\mu}d_{l})$	Q_{1d}	$(\bar{l}_{\mu}\gamma_{\mu}l_{\tau})(\bar{d}_{e}\gamma^{\mu}d_{l})$
0.0	LIKWINW JOWKY					$Q_{lg}^{(1)}$	$(\tilde{l}_p \gamma_p l_r)(\tilde{q}_i \gamma^\mu q_i)$	Q_{ci}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\tau})(\tilde{a}_{\mu}\gamma^{\mu}u_{\ell})$	$Q_{\ell^{\mathrm{H}}}$	$(\bar{q}_j \gamma_{j\ell} q_{\ell})(\bar{e}_i \gamma^{\mu} e_l)$
	Y2,2		10 ² Y		s2.2n		$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_i \gamma^\mu \tau^I q_i)$	Q_{et}	$(\bar{e}_y \gamma_p e_r)(\bar{d}_s \gamma^s d_b)$	$Q_{qu}^{(1)}$	$(\bar{q}_t \gamma_p q_r)(\bar{u}_s \gamma^\mu u_t)$
-	A V		V AV	+00	V V V			$Q_{ad}^{(1)}$	$(\hat{u}_{\mu}\gamma_{\mu}u_{r})(\tilde{d}_{e}\gamma^{\mu}d_{l})$	$Q_{q_1}^{(k)}$	$(\bar{q}_{g}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{e}\gamma^{\mu}T^{A}u_{l})$
9,0	$\varphi^{i}\varphi G^{\alpha}_{\mu\nu}G^{\alpha\mu\nu}$	Q _{eff} .	$(l_p \sigma^{\mu\nu} e_r) \tau^{\nu} \varphi W^{\prime}_{\mu\nu}$	$Q_{q\bar{q}}$	$(\varphi^{\dagger}(D_{\mu}\varphi)(l_{p}\gamma^{*}l_{r})$			22	$(\bar{a}_s \gamma_s T^A u_s)(\bar{d}_s \gamma^{\mu} T^A d_t)$	Q(1)	(40.00)(d. 1+d.)
$Q_{\mu\bar{\Omega}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_{\rho}\sigma^{\mu\nu}c_{r})\varphi B_{\mu\nu}$	$Q_{gl}^{(3)}$	$(\varphi^{\dagger}i\hat{D}^{I}_{\mu}\varphi)(\hat{l}_{\mu}\tau^{I}\gamma^{\mu}l_{r})$					92	$(\bar{q}_t\gamma_tT^Aq_t)(\bar{d}_t\gamma^sT^Ad_t)$
Q_{qW}	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}\mu\nu$	Q_{uG}	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^A u_{\tau})\widetilde{\varphi} G^A_{\mu\nu}$	Q_{qq}	$(\varphi^{\dagger}i \vec{D}_{\mu} \varphi)(\vec{e}_{\mu} \gamma^{\mu} e_{\nu})$	(LR	(RL) and (LR)(LR)	B-violating			
$Q_{\sqrt{N}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I}\omega^{\nu}$	Q_{uW}	$(\bar{q}_{p}\sigma^{\mu\sigma}u_{r})\tau^{I}\widetilde{\varphi}W^{I}_{\mu\nu}$	$Q_{qq}^{(1)}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{q}_{\rho} \gamma^{\mu} q_{r})$	Que	$(Ee_i)(d_i a^i)$	an	5""" Eu [(de)	FOUT	$[(q_{ij}^{sj})^T Cl_{ij}^k]$
9,0	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uS}	$(q_p \sigma^{\mu\nu} u_r) \overline{\varphi} B_{\rho\nu}$	$Q_{ m eq}^{(3)}$	$(\varphi^{\dagger}i \overset{i}{D}{}^{I}_{\mu} \varphi)(q_{\nu}\tau^{I}\gamma^{\mu}q_{\nu})$	Q ^[1]	$(\phi_i^i v_r) e_{i0}(\phi_i^i d_i)$	0	50.57 E. ((g0)	Cell	$[(a_i)^T C a_i]$
$Q_{\mu\bar{N}}$	$\varphi^{\dagger}\varphi \overline{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}d_{r})\varphi G^{A}_{\mu\nu}$	$Q_{\varphi \pi}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{u}_{\rho} \gamma^{\mu} u_{\tau})$	QH	$\langle q_i^{i}T^{ii}v_r \rangle e_{ii} \langle q_i^{k}T^{ii}d_i \rangle$	Q(1)	2037 E 418 cm [(02	i)TCg	*] [(q2m) ⁷ C22]
QUND	$\varphi^{\dagger}\tau^{J}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(q_p\sigma^{\mu\nu}d_r)\tau^I\varphiW^I_{\mu\nu}$	Q_{qd}	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{d}_{p} \gamma^{*} d_{r})$	Q	$(l_{\mu}^{i}c_{\nu})c_{\mu}(\hat{q}_{\nu}^{k}a_{t})$	$Q_{\rm HH}^{\rm SN}$	$\mathcal{L}_{\text{con}}^{[2]} = \mathcal{E}^{\alpha\beta\gamma}(\tau^{\dagger}\varepsilon)_{\mu}(\tau^{\dagger}\varepsilon)_{vac} \left[(q_{\tau}^{\alpha\beta})^{T}Cq_{\tau}^{\beta\beta} \right] \left[(q_{\tau}^{oa})^{T}Cl_{\tau}^{\beta} \right]$		
$Q_{\sqrt{N}B}$	$\varphi^{l}\tau^{l}\varphi \widetilde{W}^{l}_{\mu\nu}B^{\mu\nu}$	Q_{d3}	$(\bar{q}_j \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	Q_{pol}	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\hat{u}_{\mu}\gamma^{\mu}d_{\tau})$	$Q_{inpu}^{(2)}$	$(\bar{l}_p^i\sigma_{\mu\nu}e_{\nu})e_{\mu}(\bar{q}_s^{\pm}\sigma^{\mu\nu}u_t)$	Qen	$e^{i u^2 \gamma} \left[(d^a_\mu)^T C u^d_\mu \right] \left[(u^a_\mu)^T C v_0 \right]$		

- Write down all possible (non-redundant) dimension-6 operators ...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott. (See also Jiang-Hao Yu's talk on Friday.)
- A full global fit with all measurements to all operator coefficients?
 - ▶ We usually only need to deal with a subset of them, *e.g.* ~ 20-30 parameters for **Higgs and electroweak** measurements.
- Do a global fit and present the results with some fancy bar plots!

Higgs + EW, Results from the Snowmass 2021 (2022) study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

Jiayin Gu (顾嘉荫)

Fudan University

Top operators with $e^+e^- ightarrow tar{t}$

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

Jiayin Gu (顾嘉荫)

Fudan University

7

Many studies on SMEFT global fits!

Jiayin Gu (顾嘉荫)

Fudan University

8

Machine learning is not physics!

- ▶ [2401.02474] Shengdu Chai, JG, Lingfeng Li on $e^+e^- \rightarrow W^+W^-$.
- Many studies!
 - [1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez,
 [2007.10356] Chen, Glioti, Panico, Wulzer (*pp* → *ZW*),
 [2211.02058] Ambrosio, Hoeve, Madigan, Rojo, Sanz (*pp* → *tt*, *pp* → *hZ*),

Jiayin Gu (顾嘉荫)

Why Machine learning in SMEFT analyses?

- In many cases, the new physics contributions are sensitive to the differential distributions.
 - $e^+e^- \rightarrow W^+W^- \rightarrow 4f \Rightarrow 5$ angles
 - ► $e^+e^- \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow 6f$ \Rightarrow 9 angles
 - How to extract information from the differential distribution?
 - ► If we have the full knowledge of $\frac{d\sigma}{d\Omega} \Rightarrow$ matrix-element method, optimal observables...
- The ideal $\frac{d\sigma}{d\Omega}$ we can calculate is not the $\frac{d\sigma}{d\Omega}$ that we actually measure!
 - Detector acceptance, measurement uncertainties, ISR/beamstrahlung ...
 - In practice we only have MC samples, not analytic expressions, for do/do.

The "inverse problem"

- ► Forward: From model parameters we can calculate the ideal $\frac{d\sigma}{d\Omega}$, simulate complicated effects and produce MC samples.
- Inverse: From data / MC samples, how do we know the model parameters?
- With Neural Network we can (in principle) reconstruct $\frac{d\sigma}{d\Omega}$ (or likelihood ratios) from MC samples.

Jiayin Gu (顾嘉荫)

- We have a theory (SMEFT) that gives a differential cross section d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
 d
- For simplicity, let's ignore the total rate and focus on $\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \equiv p(\mathbf{x}|\mathbf{c})$, *i.e.* it's a probability density function of the observables \mathbf{x} .
- ► Define the likelihood function $\mathcal{L}(\mathbf{c}|\mathbf{x}) \equiv p(\mathbf{x}|\mathbf{c})$. For a sample of *N* events, maximizing the total likelihood $\prod_{i=1}^{N} \mathcal{L}(\mathbf{c}|\mathbf{x}_i)$ (or the log likelihood) gives the best estimator for **c**. (matrix-element method)
- ► For two model points c_0 and c_1 , the likelihood ratio $r(\mathbf{x}|\mathbf{c}_0, \mathbf{c}_1) = \frac{p(\mathbf{x}|\mathbf{c}_0)}{p(\mathbf{x}|\mathbf{c}_1)}$ provides the optimal statistical test (Neyman–Pearson lemma).
 - We usually set c_1 to be SM.

A rough sketch

- We do not know p(x|c) or $r(\mathbf{x}|\mathbf{c}_0, \mathbf{c}_1)$, but we can use neural network to construct an estimator $\hat{r}(\mathbf{x}|\mathbf{c}_0, \mathbf{c}_1)$ and a loss function(al) $L(\hat{r})$ which is minimized when $\hat{r} = r$.
- By minimizing $L(\hat{r})$ with respect to \hat{r} we can find the true r in the ideal limit (large sample, perfect training).
- There are many ways to construct a loss function(al)....
- With additional assumptions on how dσ/dΩ depends on c (*i.e.*, a linear or a quadratic relation), we only need to train a finite number of times to obtain an estimator r(x|c₀, c₁) for any c₀.

Jiayin Gu (顾嘉荫)

Particle physics structure

• One could make use of latent variable "*z*" (the parton level analytic result for $\frac{d\sigma}{d\Omega}$) to increase the performance of ML.

[1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez

• Assuming linear dependences $\frac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} c_i$, there is a method

called SALLY (Score approximates likelihood locally).

- ► In this case, for each parameter we only need to train once to obtain $\alpha_i \equiv \frac{S_{1,i}}{S_0}$. (It is basically the ML version of Optimal Observables.)
- We can calculate the "ideal" $\alpha(z)$ which will help us train the actual $\alpha(x)$.

$$L[\hat{\alpha}(\mathbf{x})] = \sum_{\mathbf{x}_i, \mathbf{z}_i \sim \mathrm{SM}} |\alpha(\mathbf{z}_i) - \hat{\alpha}(\mathbf{x}_i)|^2.$$

Jiayin Gu (顾嘉荫)

The ML analysis of $e^+e^- ightarrow W^+W^-$

- ▶ $e^+e^- \rightarrow W^+W^-$, 240 GeV, unpolarized beams, semileptonic channel.
- Training sample: 2×10^6 events. Validation sample: 5×10^5 events.
 - This is much smaller than the actual data set ($\sim 10^8$ events) we will have!
- MadGraph/Pythia/Delphes, ILD-like detector card.
- ▶ Background: $e^+e^- \rightarrow ZZ \rightarrow jj\ell^+\ell^-$ with a missing lepton.
- Inputs: particle 4 momenta + 5 reconstructed angles.
- Fully connected neural network (FCNN), 9 layers and 200 nodes each layer.
- Average over 8 NN models to reduce systematics from training.

The parton-level and detecter-level distributions

- ▶ In the analysis, the decay angles of the hadronic W are "folded."
- Here the decay angles are "unfolded" for display.

Jiayin Gu (顾嘉荫)

Fudan University

The parton-level and detecter-level distributions

The difference between detector-level and parton-level values for each angle.

Jiayin Gu (顾嘉荫)

Fudan University

3-aTGC fit, truth-level sample

- The likelihood ratio is obtained in the full SMEFT framework. For convenience, the results are presented in the 3-aTGC framework.
- The results are scaled to 10^4 events.
- At the truth level, Optimal Observables (OO) gives the ideal results by construction.
- Machine learning suffers from imperfect training and has no advantage.

3-aTGC fit, detector-level sample

- Naively applying truth-level optimal observables to detector-level samples could lead to a large bias!
- ML model trained on detector-level samples (Sally-DA) automatically take care of the detector effects and are more robust.

Fudan University

3-aTGC fit, detector-level sample with background

- Add 10% ZZ background. A large bias can be introduced if we failed to take account of it!
- SALLY-DBA: trained with both signal and backgrounds with the correct weighting to reconstruct the *α̂*(*x*) for the combined differential cross section.

Fudan University

 OOC, Sally-DCA: Optimal observables and Sally-DA combined with a classifier to remove (most of) background.

Jiayin Gu (顾嘉荫)

Fudan University

Comparison of biases (reconstructed central values)

 For the detector-level sample with background, Sally-DBA has the least bias.

Fudan University

22

bias vs. training sample size

- \blacktriangleright The current bias is still unacceptable for future colliders with $\sim 10^8~\textit{WW}$ events.
- Hopefully with more computing resources in the future, the bias can be reduced to the desired level.

Jiayin Gu (顾嘉荫)

Fudan University

We have no idea what is the new physics beyond the Standard Model.

- One important direction to move forward is to do precision measurements of the Standard Model processes.
 - HL-LHC is ok, but a future lepton collider is better!
 - SMEFT is a good theory framework (but is not everything).
- Machine learning is (likely to be) the future!
 - ► High precision ⇒ high demand on reducing biases/systematics to the same level.
 - ML helps take care of the detector/background effects.

Conclusion

When will Machine take over?

- Before or after a future lepton collider is built?
- Many more studies to do!
 - Di-leptonic & fully hadronic channels.
 - Other processes, *e.g.* $e^+e^- \rightarrow t\bar{t}$ (current work with other students),
 - In reality, MC simulation does not perfectly describe data...

Jiayin Gu (顾嘉荫)

backup slides

- Results from individual neural network (NN) suffers from a non-negligible systematics from imperfect training.
- We use the average $\hat{\alpha}_i$ of the 8 models for which the systematics largely cancels.

Fudan University

27

Tree-level dim-6 CP-even operators: 6 parameters (excluding modifications in m_W):

$$\delta g_{1Z}, \quad \delta \kappa_{\gamma}, \quad \lambda_{Z}, \quad \delta g_{W}^{\ell}, \quad \delta g_{Z,L}^{e}, \quad \delta g_{Z,R}^{e}.$$
(1)

$$\mathcal{L}_{\text{TGC}} = ie(W^{+}_{\mu\nu}W^{-\mu} - W^{-}_{\mu\nu}W^{+\mu})A^{\nu} + ie(1 + \delta\kappa_{\gamma})A^{\mu\nu}W^{+}_{\mu}W^{-}_{\nu} + igc_{w}\left[(1 + \delta g_{1Z})(W^{+}_{\mu\nu}W^{-\mu} - W^{-}_{\mu\nu}W^{+\mu})Z^{\nu} + (1 + \delta g_{1Z} - \frac{s^{2}_{w}}{c^{2}_{w}}\delta\kappa_{\gamma})Z^{\mu\nu}W^{+}_{\mu}W^{-}_{\nu}\right] + \frac{ig\lambda_{Z}}{m^{2}_{W}}\left(s_{w}W^{+\nu}_{\mu}W^{-\rho}A^{\mu}_{\rho} + c_{w}W^{+\nu}_{\mu}W^{-\rho}Z^{\mu}_{\rho}\right), \qquad (2)$$
$$\mathcal{L}_{Vff} = -\frac{g}{\sqrt{2}}(1 + \delta g^{\ell}_{W})\left[W^{+}_{\mu}\bar{\nu}_{L}\gamma^{\mu}e_{L} + \text{h.c.}\right]$$

$$-\frac{g}{c_{W}}Z_{\mu}\left[\bar{e}_{L}\gamma^{\mu}(-\frac{1}{2}+s_{W}^{2}+\delta g_{Z,L}^{e})e_{L}+\bar{e}_{R}\gamma^{\mu}(s_{W}^{2}+\delta g_{Z,R}^{e})e_{R}\right]+\ldots,$$
 (3)

Jiayin Gu (顾嘉荫)

Fudan University

- Without good Z-pole measurements, the *eeZh* contact interaction may have a significant impact on the Higgs coupling determination.
- Current (LEP) Z-pole measurements are not good enough for CEPC/FCC-ee Higgs measurements!
 - A future Z-pole run is important!
- Linear colliders suffer less from the lack of a Z-pole run. (Win Win!)

$$\begin{array}{l} O^1_{\varphi q} \equiv \frac{y_2^2}{2} ~~\bar{q} \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{uG} \equiv y_t g_s ~~\bar{q} T^A \sigma^{\mu\nu} u ~ \epsilon \varphi^* G^A_{\mu\nu}, \\ O^3_{\varphi q} \equiv \frac{y_2^2}{2} ~~\bar{q} \tau^I \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu^I \varphi, ~~ O_{uW} \equiv y_t g_W ~~\bar{q} \tau^I \sigma^{\mu\nu} u ~ \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi u} \equiv \frac{y_2^2}{2} ~~\bar{u} \gamma^\mu u ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{dW} \equiv y_t g_W ~~\bar{q} \tau^I \sigma^{\mu\nu} d ~ \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi u d} \equiv \frac{y_2^2}{2} ~~\bar{u} \gamma^\mu d ~~ \varphi^T \epsilon ~ i D_\mu \varphi, ~~ O_{uB} \equiv y_t g_Y ~~\bar{q} \sigma^{\mu\nu} u ~~ \epsilon \varphi^* B_{\mu\nu}, \\ O^1_{iq} \equiv \frac{1}{2} ~~\bar{q} \tau^I \gamma_\mu q ~~\bar{l} \tau^I \gamma^\mu l, \\ O^1_{iq} \equiv \frac{1}{2} ~~\bar{q} \gamma_\mu q ~~\bar{l} \gamma^\mu l, \\ O_{eq} \equiv \frac{1}{2} ~~\bar{q} \gamma_\mu q ~~\bar{l} \gamma^\mu e, \\ O_{eu} \equiv \frac{1}{2} ~~\bar{u} \gamma_\mu u ~~\bar{e} \gamma^\mu e, \end{array}$$

- Also need to include top dipole interactions and *eett* contact interactions!
- Hard to resolve the top couplings from 4f interactions with just the 365 GeV run.
 - Can't really separate $e^+e^- \rightarrow Z/\gamma \rightarrow t\bar{t}$ from

$$e^+e^-
ightarrow Z'
ightarrow tt$$

Is that a big deal?

Jiayin Gu (顾嘉荫)

Top operators in loops (Higgs processes) [1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

- $O_{tB} = (\bar{Q}\sigma^{\mu\nu}t) \tilde{\varphi}B_{\mu\nu} + h.c.$ is not very well constrained at the LHC, and it generates dipole interactions that contributes to the $h\gamma\gamma$ vertex.
- Deviations in $h\gamma\gamma$ coupling \Rightarrow run at $\sim 365 \text{ GeV}$ to confirm?

Top operators in loops (current EW processes)

[2205.05655] Y. Liu, Y. Wang, C. Zhang, L. Zhang, JG

	Experiment	Observables					
Low Energy	CHARM/CDHS/ CCFR/NuTeV/ APV/QWEAK/ PVDIS	Effective Couplings					
		Total decay width Γ_Z					
Z-pole	LEP/SLC						
	LHC/Temptage /	Total decay width Γ_W					
W-pole	LIC/ Tevation/	W branching ratios $Br(W \rightarrow lv_l)$					
	LEI / SLC	Mass of W Boson M_W					
		Hadronic cross-section σ_{had}					
$ee \rightarrow qq$	LEP/TRISTAN	Ratio of cross-section R_f					
		Forward-Backward Asymmetry for $b/c A_{FB}^{f}$					
		cross-section σ_f					
$ee \rightarrow ll$	LEP	Forward-Backward Asymmetry A_{FB}^{f}					
		Differential cross-section $\frac{d\sigma_f}{dcos\theta}$					
$aa \rightarrow WW$	IFD	cross-section σ_{WW}					
$cc \rightarrow WW$	LEF	Differential cross-section $\frac{d\sigma_{WW}}{dcos\theta}$					

- Top operators (1-loop) + EW operators (tree, including bottom dipole operators)
- $e^+e^- \rightarrow f\bar{f}$ at different energies, $e^+e^- \rightarrow W^+W^-$.

32

Top operators in loops (current EW processes)

Good sensitivities, but too many parameters for a global fit...

Fudan University

Top operators in loops (future EW processes)

- Good sensitivities, but too many parameters for a global fit...
- It shows the importance of directly measuring $e^+e^- \rightarrow t\bar{t}$.

Jiayin Gu (顾嘉荫)

Probing dimension-8 operators?

- The dimension-8 contribution has a large energy enhancement (~ E⁴/Λ⁴)!
- It is difficult for LHC to probe these bounds.
 - Low statistics in the high energy bins.
 - Example: Vector boson scattering.
 - Λ ≤ √s, the EFT expansion breaks down!
- Can we separate the dim-8 and dim-6 effects?
 - Precision measurements at several different √s?

(A very high energy lepton collider?)

Or find some special process where dim-8 gives the leading new physics contribution?

SMEFT at future lepton colliders with machine learning

Jiayin Gu (顾嘉荫)

The diphoton channel [arXiv:2011.03055] Phys.Rev.Lett. 129, 011805, JG, Lian-Tao Wang, Cen Zhang

- $e^+e^- \rightarrow \gamma\gamma$ (or $\mu^+\mu^- \rightarrow \gamma\gamma$), SM, non-resonant.
- ► Leading order contribution: dimension-8 contact interaction. $(f^+f^- \rightarrow \bar{e}_L e_L \text{ or } e_R \bar{e}_R)$

$$\mathcal{A}(f^+f^-\gamma^+\gamma^-)_{\rm SM+d8} = 2e^2 \frac{\langle 24\rangle^2}{\langle 13\rangle\langle 23\rangle} + \frac{a}{v^4} [13][23]\langle 24\rangle^2 \,.$$

Can probe dim-8 operators (and their positivity bounds) at a Higgs factory (~ 240 GeV)!

Jiayin Gu (顾嘉荫)