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Why SMEFT at future lepton colliders?

» Build large colliders — go to high energy — discover new particles!

» Higgs and nothing else?

» What’s next?
> Build an even larger collider (~ 100 TeV)?
> No guaranteed discovery!
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Why SMEFT at future lepton colliders?

>

Build large colliders — go to high energy — discover new particles!

v

Higgs and nothing else?

What's next?
> Build an even larger collider (~ 100 TeV)?
> No guaranteed discovery!

v

v

Build large colliders — do precision measurements — probe new
physics!

» Higgs factory! (HL-LHC, or a future lepton collider)

> Many other precision measurements! (Z, W, top, ...)

» Standard Model Effective Field Theory (model independent approach)
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To summarize in one sentence...

“Our future discoveries must be looked for in the sixth place of

decimals.”
— Albert A. Michelson
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The Standard Model Effective Field Theory

» Everything is fine as long as we are happy with finite precision in
perturbative calculation.

v

d=5: ZLLHH ~ %uy, Majorana neutrino mass.

v

Assuming Baryon and Lepton numbers are conserved,

(6) (8)

C; C:

LsmerT = Lsm + E ﬁ@,@ + E ﬁ@;g) NI
i )

v

If A > v, E, then SM + dimension-6 operators are sufficient to
parameterize the physics around the electroweak scale.
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The Standard Model Effective Field Theory
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» Write down all possible (non-redundant) dimension-6 operators ...

» 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3
generations. [arXiv:1008.4884] Grzadkowski, Iskrzyriski, Misiak, Rosiek, [arXiv:1312.2014] Alonso,

Jenkins, Manohar, Trott. (See also Jiang-Hao Yu’s talk on Friday.)

» A full global fit with all measurements to all operator coefficients?

> We usually only need to deal with a subset of them, e.g. ~ 20-30
parameters for Higgs and electroweak measurements.

» Do a global fit and present the results with some fancy bar plots!
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Higgs + EW, Results from the Snowmass 2021 (2022) stu

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

precision reach on effective couplings from SMEFT global fit
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Top operators with ete~ — tt
[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou
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Many studies on SMEFT global fits!

[2012.02779] Ellis, Madigan, Mimasu, Sanz, You [2311.00020] Allwicher, Cornella, Isidori, Stefanek

[2311'.04963] Bartocci, Biekotter, Hurth
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[2105.00006] The SMEFiIT Collaboration [2208.08454] Brivio, Bruggisser, Elmer, Geoffray, Luchmann, Plehn
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Machine learning in SMEFT analyses

Machine learning is not physics! Eé | (Delicious!)

now

» [2401.02474] Shengdu Chai, JG, Lingfeng Lion eTe™ — WFW-.

» Many studies!

> [1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez,
[2007.10356] Chen, Glioti, Panico, Wulzer (pp — ZW),
[2211.02058] Ambrosio, Hoeve, Madigan, Rojo, Sanz (pp — tt, pp — h2),
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Why Machine learning in SMEFT analyses?

» In many cases, the new physics
contributions are sensitive to the
differential distributions.

» ete™ - WHW- — 4f = 5angles

» ete™ — tf — bWTbW— — 6f

= 9angles

> How to extract information from the
differential distribution?

> |If we have the full knowledge of g—g =
matrix-element method, optimal
observables...

» The ideal % we can calculate is not the
92 that we actually measure!

» Detector acceptance, measurement
uncertainties, ISR/beamstrahlung ...

> In practice we only have MC samples,
not analytic expressions, for g—g.

Jiayin Gu (B 7H)
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The “inverse problem”
Monte Carlo simulation Machine Learning

model parameters ’
%‘ & ”‘ il data/MC samples

WP s

likelihood ratios

» Forward: From model parameters we can calculate the ideal g—g,

simulate complicated effects and produce MC samples.

» Inverse: From data / MC samples, how do we know the model
parameters?

» With Neural Network we can (in principle) reconstruct %’ (or likelihood
ratios) from MC samples.
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A rough sketch

» We have a theory (SMEFT) that gives a differential cross section %

which is a function of the parameters of interest ¢ (Wilson coefficients).

» For simplicity, let’s ignore the total rate and focus on 1 %2 = p(x|c), i.e.
it’s a probability density function of the observables x.

» Define the likelihood function £(c|x) = p(x|c). For a sample of N

N

events, maximizing the total likelihood _ch(c|x,-) (or the log likelihood)
=

gives the best estimator for c. (matrix-element method)

> For two model points ¢, and ¢, the likelihood ratio r(x|co, ¢1) = 5%/}

provides the optimal statistical test (Neyman—Pearson lemma).
> We usually set ¢; to be SM.
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A rough sketch
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» We do not know p(x|c) or r(x|co, c1), but we can use neural network to
construct an estimator 7(x|co, c1) and a loss function(al) L(7) which is
minimized when r = r.

» By minimizing L(7) with respect to r we can find the true rin the ideal limit
(large sample, perfect training).

» There are many ways to construct a loss function(al)....

» With additional assumptions on how % depends on c (i.e., a linear or a
quadratic relation), we only need to train a finite number of times to
obtain an estimator 7(x|co, c1) for any c;.
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Particle physics structure

» One could make use of latent variable “Z’ (the parton level analytic result
for 92) to increase the performance of ML.
[1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez

0;
— r(z, 2|§) —————
Lo argmin L[g] — 7(z|0) —>
J— U@, 2|0) ———— 9 approximate
augmented data likelihood
ratio 9,
Simulation Machine Learning Inference

» Assuming linear dependences g—g = Sy +>.S; ¢, there is a method
i

called SALLY (Score approximates likelihood locally).
> In this case, for each parameter we only need to train once to obtain

aj = S (It is basically the ML version of Optimal Observables.)
So

> We can calculate the “ideal” «(z) which will help us train the actual a(x).
N N 2
La(l = D la(z) —alx)l*.
Xj,Zi~SM
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The ML analysis of ete™ — W W~

» ete” — WTW, 240 GeV, unpolarized beams, semileptonic channel.

» Training sample: 2 x 10° events. Validation sample: 5 x 10° events.
» This is much smaller than the actual data set (~ 108 events) we will have!

» MadGraph/Pythia/Delphes, ILD-like detector card.
» Background: et e~ — ZZ — jj¢" ¢~ with a missing lepton.
» Inputs: particle 4 momenta + 5 reconstructed angles.

» Fully connected neural network (FCNN), 9 layers and 200 nodes each
layer.

» Average over 8 NN models to reduce systematics from training.

Jiayin Gu (B 7H) Fudan University
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The parton-level and detecter-level distributions
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» In the analysis, the decay angles of the hadronic W are “folded.”

» Here the decay angles are “unfolded” for display.
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The parton-level and detecter-level distributions
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3-aTGC fit,
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Sky

» The results are scaled to 10* events.
» At the truth level, Optimal Observables (OO) gives the ideal results by

construction.

Jiayin Gu (Fi3E74)

Az

The likelihood ratio is obtained in the full SMEFT framework. For
convenience, the results are presented in the 3-aTGC framework.

Machine learning suffers from imperfect training and has no advantage.

Fudan University
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3-aTGC fit,

Sk,
o
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» Naively applying truth-level optimal observables to detector-level

samples could lead to a large bias!

» ML model trained on detector-level samples (Sally-DA) automatically

take care of the detector effects and are more robust.
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3-aTGC fit,
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» Add 10% ZZ background. A large bias can be introduced if we failed to
take account of it!

» SALLY-DBA: trained with both signal and backgrounds with the correct
weighting to reconstruct the &(x) for the combined differential cross
section.

Jiayin Gu (B 7H) Fudan University
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Further comparisons between methods
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» OOC, Sally-DCA: Optimal observables and Sally-DA combined with a
classifier to remove (most of) background.

Gu (HiFZEA)
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Comparison of biases (reconstructed central values)

Reconstructed Central Values of aTGCs for Sample-DB

7691,
m 6K,
mA,

Sally-DA Sally-DCA Sally-DBA

» For the detector-level sample with background, Sally-DBA has the least
bias.
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bias vs. training sample size

§ o1 P
O 0.05 o \ o
e 2 3 - : : :
s o001 " U TS N .
S 0.005} L : o s 694,
© o Y S
> S ‘ S = 6K,
S 0.001f S SR R S v
£ 0.0005| L 1 A oA
S o | e
0.0001b . S
2 20 200 2000

Number of Training Set (x10%)

» The current bias is still unacceptable for future colliders with ~ 10% WW
events.

» Hopefully with more computing resources in the future, the bias can be
reduced to the desired level.
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Conclusion

» We have no idea what is the new physics beyond the Standard
Model.

» One important direction to move forward is to do precision
measurements of the Standard Model processes.

» HL-LHC is ok, but a future lepton collider is better!
» SMEFT is a good theory framework (but is not everything).

» Machine learning is (likely to be) the future!

> High precision = high demand on reducing biases/systematics to the same
level.

> ML helps take care of the detector/background effects.

Jiayin Gu (B 7H) Fudan University
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Conclusion

» When will Machine take over?
» Before or after a future lepton collider is built?

» Many more studies to do!
> Di-leptonic & fully hadronic channels.
» Other processes, e.g. ete~ — tt (current work with other students), .....
> In reality, MC simulation does not perfectly describe data...

Jiayin Gu (B 7H) Fudan University
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backup slides
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Averaging over 8 NN Models
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» Results from individual neural network (NN) suffers from a non-negligible
systematics from imperfect training.

» We use the average &; of the 8 models for which the systematics largely
cancels.
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SMEFT parameterization of ete~ — WrW~

Tree-level dim-6 CP-even operators: 6 parameters (excluding modifications
in my):

5g127 5//‘;’Y ) AZ7 5g|l;V7 5g§,L ) 692,‘? . (1)

Lrae = Te(Wi, W — W, WHOA” + ie(1 + 5y AR WE W,

2
1 igew [(1 +5G12) (Wi, WH — W, WHIZ 4 (14 6g17 — S bm) 20 WE Wy

2 W
+ 2z S (W WA W W) @
Ly =— %(1 +6gy) [Wioy" e, +h.c.]
_ 1 _
- ngu |:eL"/H(_§ + sy + 097, )eL + em (siy+ 59z p)er| +.. . (3)
w
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Impacts of (lack of) the Z-pole run

10 Ratios, real EW / perfect EW__(no H exotic decay) | T : CEPC/FCC-ee without Z-pole |
T

977 gy 59t/ 5957 895y Ty

» Without good Z-pole measurements, the eeZh contact interaction may
have a significant impact on the Higgs coupling determination.

CEPC/FCC-ee Higgs measurements!

» Current (LEP) Z-pole measurements are not good enough for € >‘/ﬂ 2
> A future Z-pole run is important! e N

» Linear colliders suffer less from the lack of a Z-pole run. (Win Win!)

Jiayin Gu (B 7H) Fudan University
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Probing Top operators with €= e — tt  (arxiv:1807.02121) Durieu, Perelis, Vos, Zhang

» Also need to include top dipole

0L, =% av'q ¢'iDup, Ous =me, GTAHu "G, interactions and eett contact
03, = 222 griqtg <p’fi<ﬁ,{ @, Ouw =yigw qrioc™u ep*W], interactions!

Opu = % uytu LpW‘BMLp, Ouw = yigw Grlot’d ESQ*W;fw .
Opa =% wd ¢TeiDyp, Oub=ugy @o*u ep*B,, > Hardtoresolve the top couplings
¢ 2 = from 4f interactions with just the

ol = 3 v i, 365 GeV run.

O, = 3 a7 yuq Iy, » Can't really separate

O =3 Gyu W, ete™ — Z/y — tt from
Ocg =35 Gyuq EY'e, ete” = Z — ti.

Ocu =1 yu &yle, > |s that a big deal?

A
o Cfy

e ]

ically optimal observables

R CC-like run scenario
O ! 200 b1 at /5 = 350 GeV
340G, - 1.5ab~! at /5 = 365 GeV
062 cL, P(et,e7) = (0%,0%)

104 1053 1072 1052 10° 10!

Fudan University
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31

Top operators in loops (Higgs processes) [1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

precision of the Higgs parameters at CC (global fit, Ax?=1)

CC 240GeV circular collider with unpolarized beai El
C 240GeV + HL-LHC 240GeV (5/ab) + 350GeV (0. 2/ab)+365GeV (1.5/ab)]
OC muBIRECe 00 Shave: ainop purameters setio zer - |]
c =
o
]
[
[
a I
1074 — — — 1 1 >
6Cz Czz €z Ty CTzy CTgg Oy OY. Oy, Oy, Oy, Az Sky10
B OISQ
» Op = (Qo""t) B, + h.c. is not very well o2
constrained at the LHC, and it generates
dipole interactions that contributes to the hy~y
vertex.
0.2 ey T
» Deviations in hy~ coupling = run at R
. -04 -0.2 0.0 02 04
~ 365 GeV to confirm? Co
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Top operators in loops (current EW processes)

[2205.05655] Y. Liu, Y. Wang, C. Zhang, L. Zhang, JG

Experiment Observables
CHARM/CDHS/
Low Energy Eg‘};?él‘:lv‘g:;// Effective Couplings
PVDIS
Total decay width I'z
Hadronic cross-section opeq
Z-pole LEP/SLC Ratio of decay width Ry
Forward-Backward Asymmetry A{‘B
Polarized Asymmetry Ay
Total decay width I'yy
W-pole Lﬂfg,‘j‘;‘fg"‘/ W branching ratios Br(W — luy)
Mass of W Boson My,
Hadronic cross-section ojaa
ee = qq LEP/TRISTAN Ratio of cross-section Ry
Forward-Backward Asymmetry for b/c AL,
cross-section oy
ee — 1l LEP Forward-Backward Asymmetry AL,
Differenti o7,
cross-section oww
e WW LEP Differential cross-section ﬁa‘;

» Top operators (1-loop) + EW
operators (iree, including
bottom dipole operators)

» eTe™ — ff atdifferent
energies, ete” — WrW-.

Fudan University




Top operators in loops (current EW processes)
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» Good sensitivities, but too many parameters for a global fit...
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Top operators in loops (future EW processes)

10°
- Current, Marginalized - Current, Individual

[ Fcc-ee, Marginalized [l FCC-ee, Individual
[ cepc, Marginalized [l CEPC, Individual

i ‘ ‘
10 U
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10*

10

107

» Good sensitivities, but too many parameters for a global fit...
» It shows the importance of directly measuring et e~ — tf.

Gu (FEA)
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Probing dimension-8 operators?

CMS-PAS-SMP-18-001 3591 (13Tev)

wf-cms ! !

» The dimension-8 contribution has a large E
energy enhancement (~ E*/A%)!

[N
30~

Events / bin

» It is difficult for LHC to probe these F o
bounds. o Sl

> Low statistics in the high energy bins.

» Example: Vector boson scattering. B +H
s
» A < /s, the EFT expansion breaks 3 %»1 Toor— e
mr(WZ) [GeV]
down! positivity bounds from 1902.08977 Bi, Z‘han%, Zhou
— 35.91bL£(’|3Te )
. . — - Expected 68% CL
» Can we separate the dim-8 and dim-6 % 10 N — 4
eﬁects? = g \ —— Observed 95% CL.
. < 5
> Precision measurements at several R
different \/s?
(A very high energy lepton collider?) 0

> Or find some special process where
dim-8 gives the leading new physics
contribution?

Gu (FEiA)
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The diphOtOI’] channel [arXiv:2011.03055] Phys.Rev.Lett. 129, 011805, JG, Lian-Tao Wang, Cen Zhang

» ete — vy (or ut i — ~v), SM, non-resonant.
» Leading order contribution: dimension-8 contact interaction.
(f+f_ — eLeL or e/qé/q)

ATy Jsnrras = 267 1%4()2& %[13] (23] (24)?

v

Can probe dim-8 operators (and their positivity bounds) at a Higgs
factory (~ 240 GeV)!
95%CL reach from e*e™(u* p 7) > vy

- + -
precision reach from e*e”»yy § 100

muon collider 30TeV

— CEPC il o besl reach
A T FCC-ee240GeV - 506
=0 (LG 25;)((25ev 1 a /\;7 muon collider 10Te}
Ax=1 -

allowe:
forbidden

Ng [TeV]
s

eS80

C o
Zoncey°ILC 350GeV

Q
05 z_po\e LEP2

0.1 0.5 1 5 10
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