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Why SMEFT at future lepton colliders?

▶ Build large colliders → go to high energy → discover new particles!

▶ Higgs and nothing else?

▶ What’s next?
▶ Build an even larger collider (∼ 100TeV)?
▶ No guaranteed discovery!

▶ Build large colliders → do precision measurements → probe new
physics!

▶ Higgs factory! (HL-LHC, or a future lepton collider)
▶ Many other precision measurements! (Z, W, top, ...)
▶ Standard Model Effective Field Theory (model independent approach)

Jiayin Gu (顾嘉荫) Fudan University
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To summarize in one sentence...

“Our future discoveries must be looked for in the sixth place of
decimals.”

— Albert A. Michelson

Jiayin Gu (顾嘉荫) Fudan University

SMEFT at future lepton colliders with machine learning



4

The Standard Model Effective Field Theory

▶ [Lsm] ≤ 4. Why?
▶ Bad things happen when we have non-renormalizable operators!
▶ Everything is fine as long as we are happy with finite precision in

perturbative calculation.

▶ d=5: c
Λ
LLHH ∼ cv2

Λ
νν, Majorana neutrino mass.

▶ Assuming Baryon and Lepton numbers are conserved,

LSMEFT = LSM +
∑
i

c(6)i
Λ2

O(6)
i +

∑
j

c(8)j
Λ4

O(8)
j + · · · .

▶ If Λ ≫ v, E, then SM + dimension-6 operators are sufficient to
parameterize the physics around the electroweak scale.

Jiayin Gu (顾嘉荫) Fudan University
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The Standard Model Effective Field Theory

▶ Write down all possible (non-redundant) dimension-6 operators ...

▶ 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3
generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso,
Jenkins, Manohar, Trott. (See also Jiang-Hao Yu’s talk on Friday.)

▶ A full global fit with all measurements to all operator coefficients?
▶ We usually only need to deal with a subset of them, e.g. ∼ 20-30

parameters for Higgs and electroweak measurements.

▶ Do a global fit and present the results with some fancy bar plots!

Jiayin Gu (顾嘉荫) Fudan University
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Higgs + EW, Results from the Snowmass 2021 (2022) study
[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou
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Top operators with e+e− → t t̄
[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou
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Many studies on SMEFT global fits!

Jiayin Gu (顾嘉荫) Fudan University

SMEFT at future lepton colliders with machine learning

[2012.02779] Ellis, Madigan, Mimasu, Sanz, You
[2311.04963] Bartocci, Biekötter, Hurth

[2311.00020] Allwicher, Cornella, Isidori, Stefanek

[2105.00006] The SMEFiT Collaboration [2208.08454] Brivio, Bruggisser, Elmer, Geoffray, Luchmann, Plehn
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Machine learning in SMEFT analyses

▶ [2401.02474] Shengdu Chai, JG, Lingfeng Li on e+e− → W+W−.
▶ Many studies!

▶ [1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez,
[2007.10356] Chen, Glioti, Panico, Wulzer (pp → ZW),
[2211.02058] Ambrosio, Hoeve, Madigan, Rojo, Sanz (pp → tt, pp → hZ),
......

Jiayin Gu (顾嘉荫) Fudan University

SMEFT at future lepton colliders with machine learning
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Why Machine learning in SMEFT analyses?

▶ In many cases, the new physics
contributions are sensitive to the
differential distributions.

▶ e+e− → W+W− → 4f ⇒ 5 angles
▶ e+e− → t t̄ → bW+b̄W− → 6f

⇒ 9 angles
▶ How to extract information from the

differential distribution?
▶ If we have the full knowledge of dσ

dΩ ⇒
matrix-element method, optimal
observables...

▶ The ideal dσ
dΩ we can calculate is not the

dσ
dΩ that we actually measure!

▶ Detector acceptance, measurement
uncertainties, ISR/beamstrahlung ...

▶ In practice we only have MC samples,
not analytic expressions, for dσ

dΩ .

Jiayin Gu (顾嘉荫) Fudan University
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The “inverse problem”

▶ Forward: From model parameters we can calculate the ideal dσ
dΩ ,

simulate complicated effects and produce MC samples.
▶ Inverse: From data / MC samples, how do we know the model

parameters?
▶ With Neural Network we can (in principle) reconstruct dσ

dΩ (or likelihood
ratios) from MC samples.

Jiayin Gu (顾嘉荫) Fudan University

SMEFT at future lepton colliders with machine learning
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A rough sketch

▶ We have a theory (SMEFT) that gives a differential cross section dσ
dΩ

which is a function of the parameters of interest c (Wilson coefficients).

▶ For simplicity, let’s ignore the total rate and focus on 1
σ

dσ
dΩ ≡ p(x|c), i.e.

it’s a probability density function of the observables x.

▶ Define the likelihood function L(c|x) ≡ p(x|c). For a sample of N
events, maximizing the total likelihood

N
Π
i=1

L(c|xi) (or the log likelihood)
gives the best estimator for c. (matrix-element method)

▶ For two model points c0 and c1, the likelihood ratio r(x|c0, c1) =
p(x|c0)
p(x|c1)

provides the optimal statistical test (Neyman–Pearson lemma).
▶ We usually set c1 to be SM.

Jiayin Gu (顾嘉荫) Fudan University
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A rough sketch
3/21/23, 12:18 AM NN.svg

file:///Users/gu/Dropbox/latex_template/ee-talk-new/2023/NN.svg 1/1

▶ We do not know p(x|c) or r(x|c0, c1), but we can use neural network to
construct an estimator r̂(x|c0, c1) and a loss function(al) L(̂r) which is
minimized when r̂ = r.

▶ By minimizing L(̂r) with respect to r̂ we can find the true r in the ideal limit
(large sample, perfect training).

▶ There are many ways to construct a loss function(al)....

▶ With additional assumptions on how dσ
dΩ depends on c (i.e., a linear or a

quadratic relation), we only need to train a finite number of times to
obtain an estimator r̂(x|c0, c1) for any c0.

Jiayin Gu (顾嘉荫) Fudan University
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Particle physics structure
▶ One could make use of latent variable “z” (the parton level analytic result

for dσ
dΩ ) to increase the performance of ML.

[1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez

▶ Assuming linear dependences dσ
dΩ = S0 +

∑
i
S1,i ci, there is a method

called SALLY (Score approximates likelihood locally).
▶ In this case, for each parameter we only need to train once to obtain

αi ≡
S1,i
S0

. (It is basically the ML version of Optimal Observables.)
▶ We can calculate the “ideal” α(z) which will help us train the actual α(x).

L[α̂(x)] =
∑

xi,zi∼SM

|α(zi)− α̂(xi)|2 .

Jiayin Gu (顾嘉荫) Fudan University
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The ML analysis of e+e− →W+W−

▶ e+e− → W+W−, 240 GeV, unpolarized beams, semileptonic channel.
▶ Training sample: 2× 106 events. Validation sample: 5× 105 events.

▶ This is much smaller than the actual data set (∼ 108 events) we will have!

▶ MadGraph/Pythia/Delphes, ILD-like detector card.
▶ Background: e+e− → ZZ → j j ℓ+ℓ− with a missing lepton.
▶ Inputs: particle 4 momenta + 5 reconstructed angles.
▶ Fully connected neural network (FCNN), 9 layers and 200 nodes each

layer.
▶ Average over 8 NN models to reduce systematics from training.

Jiayin Gu (顾嘉荫) Fudan University
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The parton-level and detecter-level distributions
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▶ In the analysis, the decay angles of the hadronic W are “folded.”
▶ Here the decay angles are “unfolded” for display.

Jiayin Gu (顾嘉荫) Fudan University
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The parton-level and detecter-level distributions
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▶ The difference between detector-level and parton-level values for each
angle.

Jiayin Gu (顾嘉荫) Fudan University

SMEFT at future lepton colliders with machine learning



18

3-aTGC fit, truth-level sample
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▶ The likelihood ratio is obtained in the full SMEFT framework. For
convenience, the results are presented in the 3-aTGC framework.

▶ The results are scaled to 104 events.
▶ At the truth level, Optimal Observables (OO) gives the ideal results by

construction.
▶ Machine learning suffers from imperfect training and has no advantage.

Jiayin Gu (顾嘉荫) Fudan University
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3-aTGC fit, detector-level sample
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▶ Naively applying truth-level optimal observables to detector-level
samples could lead to a large bias!

▶ ML model trained on detector-level samples (Sally-DA) automatically
take care of the detector effects and are more robust.

Jiayin Gu (顾嘉荫) Fudan University
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3-aTGC fit, detector-level sample with background
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▶ Add 10% ZZ background. A large bias can be introduced if we failed to
take account of it!

▶ SALLY-DBA: trained with both signal and backgrounds with the correct
weighting to reconstruct the α̂(x) for the combined differential cross
section.

Jiayin Gu (顾嘉荫) Fudan University
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Further comparisons between methods
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▶ OOC, Sally-DCA: Optimal observables and Sally-DA combined with a
classifier to remove (most of) background.

Jiayin Gu (顾嘉荫) Fudan University
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Comparison of biases (reconstructed central values)
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▶ For the detector-level sample with background, Sally-DBA has the least
bias.

Jiayin Gu (顾嘉荫) Fudan University
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bias vs. training sample size
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▶ The current bias is still unacceptable for future colliders with ∼ 108 WW
events.

▶ Hopefully with more computing resources in the future, the bias can be
reduced to the desired level.

Jiayin Gu (顾嘉荫) Fudan University
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Conclusion

▶ We have no idea what is the new physics beyond the Standard
Model.

▶ One important direction to move forward is to do precision
measurements of the Standard Model processes.

▶ HL-LHC is ok, but a future lepton collider is better!
▶ SMEFT is a good theory framework (but is not everything).

▶ Machine learning is (likely to be) the future!
▶ High precision ⇒ high demand on reducing biases/systematics to the same

level.
▶ ML helps take care of the detector/background effects.

Jiayin Gu (顾嘉荫) Fudan University
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Conclusion

▶ When will Machine take over?
▶ Before or after a future lepton collider is built?

▶ Many more studies to do!
▶ Di-leptonic & fully hadronic channels.
▶ Other processes, e.g. e+e− → t t̄ (current work with other students), .....
▶ In reality, MC simulation does not perfectly describe data...

Jiayin Gu (顾嘉荫) Fudan University
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backup slides

Jiayin Gu (顾嘉荫) Fudan University
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Averaging over 8 NN Models
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▶ Results from individual neural network (NN) suffers from a non-negligible
systematics from imperfect training.

▶ We use the average α̂i of the 8 models for which the systematics largely
cancels.

Jiayin Gu (顾嘉荫) Fudan University
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SMEFT parameterization of e+e− →W+W−

Tree-level dim-6 CP-even operators: 6 parameters (excluding modifications
in mW):

δg1Z , δκγ , λZ , δgℓW , δgeZ,L , δgeZ,R . (1)

LTGC = ie(W+
µνW−µ −W−

µνW+µ)Aν + ie(1 + δκγ)AµνW+
µW−

ν

+ igcw
[
(1 + δg1Z)(W+

µνW−µ −W−
µνW+µ)Zν + (1 + δg1Z −

s2w
c2w

δκγ)ZµνW+
µW−

ν

]
+

igλZ
m2
W

(
swW+ν

µ W−ρ
ν Aµ

ρ + cwW+ν
µ W−ρ

ν Zµ
ρ

)
, (2)

LVff =−
g
√
2
(1 + δgℓW)

[
W+

µ ν̄Lγ
µeL + h.c.

]
−

g
cw

Zµ

[
ēLγµ(−

1

2
+ s2w + δgeZ,L)eL + ēRγµ(s2W + δgeZ,R)eR

]
+ . . . , (3)

Jiayin Gu (顾嘉荫) Fudan University
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Impacts of (lack of) the Z-pole run
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▶ Without good Z-pole measurements, the eeZh contact interaction may
have a significant impact on the Higgs coupling determination.

▶ Current (LEP) Z-pole measurements are not good enough for
CEPC/FCC-ee Higgs measurements!

▶ A future Z-pole run is important!

▶ Linear colliders suffer less from the lack of a Z-pole run. (Win Win!)

Jiayin Gu (顾嘉荫) Fudan University
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Probing Top operators with e−e+ → t t̄ [arXiv:1807.02121] Durieux, Perelló, Vos, Zhang

▶ Also need to include top dipole
interactions and eett contact
interactions!

▶ Hard to resolve the top couplings
from 4f interactions with just the
365 GeV run.

▶ Can’t really separate
e+e− → Z/γ → t t̄ from
e+e− → Z′ → t t̄ .

▶ Is that a big deal?

Jiayin Gu (顾嘉荫) Fudan University
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Top operators in loops (Higgs processes) [1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang
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light shade: marginalized over top parameters

▶ OtB = (Q̄σµν t) φ̃Bµν + h.c. is not very well
constrained at the LHC, and it generates
dipole interactions that contributes to the hγγ
vertex.

▶ Deviations in hγγ coupling ⇒ run at
∼ 365GeV to confirm? -0.4 -0.2 0.0 0.2 0.4
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Higgs +WW
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Top operators in loops (current EW processes)
[2205.05655] Y. Liu, Y. Wang, C. Zhang, L. Zhang, JG

▶ Top operators (1-loop) + EW
operators (tree, including
bottom dipole operators)

▶ e+e− → f f̄ at different
energies, e+e− → W+W−.

Jiayin Gu (顾嘉荫) Fudan University

SMEFT at future lepton colliders with machine learning
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Top operators in loops (current EW processes)

tBc lec eec
(3)

 lϕc
(3)

 qϕc Wc BϕDc WϕDc  lϕc  eϕc  qϕc  uϕc llc' llc tWc  bϕc bBc bWc
(+)

 Qϕc
(+)

lQc lbc eQc ebc
)−(
 Qϕc  tϕc  dϕc

(1)

lqc
(3)

lqc luc ldc eqc euc edc
3−10

2−10

1−10

1

10

210

310 Tree Only
b Loop considered
t&b Loop considered
Individual Bound

▶ Good sensitivities, but too many parameters for a global fit...

Jiayin Gu (顾嘉荫) Fudan University
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Top operators in loops (future EW processes)

tBc lec eec
(3)

 lϕc
(3)

 qϕc Wc BϕDc WϕDc  lϕc  eϕc  qϕc  uϕc llc' llc tWc  bϕc bBc bWc
(+)

 Qϕc
(+)

lQc lbc eQc ebc
)−(
 Qϕc  tϕc  dϕc

(1)

lqc
(3)

lqc luc ldc eqc euc edc
4−10

3−10

2−10

1−10

1

10

210

310
Current, Marginalized Current, Individual

FCC-ee, Marginalized FCC-ee, Individual

CEPC, Marginalized CEPC, Individual

▶ Good sensitivities, but too many parameters for a global fit...
▶ It shows the importance of directly measuring e+e− → t t̄ .

Jiayin Gu (顾嘉荫) Fudan University
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Probing dimension-8 operators?

▶ The dimension-8 contribution has a large
energy enhancement (∼ E4/Λ4)!

▶ It is difficult for LHC to probe these
bounds.

▶ Low statistics in the high energy bins.
▶ Example: Vector boson scattering.
▶ Λ ≲

√
s, the EFT expansion breaks

down!

▶ Can we separate the dim-8 and dim-6
effects?

▶ Precision measurements at several
different

√
s?

(A very high energy lepton collider?)
▶ Or find some special process where

dim-8 gives the leading new physics
contribution?

Jiayin Gu (顾嘉荫) Fudan University
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CMS-PAS-SMP-18-001

positivity bounds from 1902.08977 Bi, Zhang, Zhou
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The diphoton channel [arXiv:2011.03055] Phys.Rev.Lett. 129, 011805, JG, Lian-Tao Wang, Cen Zhang

▶ e+e− → γγ (or µ+µ− → γγ), SM, non-resonant.
▶ Leading order contribution: dimension-8 contact interaction.

(f+f− → ēLeL or eRēR)

A(f+f−γ+γ−)SM+d8 = 2e2 ⟨24⟩2

⟨13⟩⟨23⟩ +
a
v4 [13][23]⟨24⟩

2 .

▶ Can probe dim-8 operators (and their positivity bounds) at a Higgs
factory (∼ 240GeV)!
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