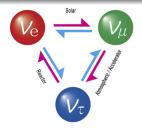


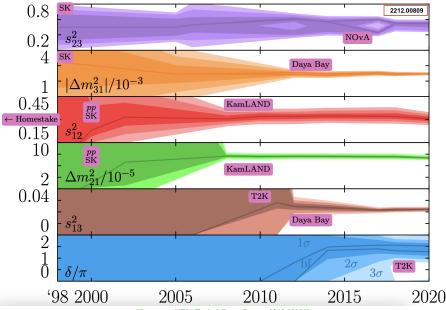
Neutrino Physics at Future Colliders


Bhupal Dev

bdev@wustl.edu

Washington University in St. Louis

Neutrino Oscillations Primer


$$|\nu_i\rangle = U_{\alpha i}|\nu_\alpha\rangle$$

$$U = \begin{pmatrix} 1 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{-i\delta} \\ 1 \\ -s_{13}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \Re(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right) \pm 8J \prod_{i>j} \sin\left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$

Requires nonzero neutrino masses and mixing \Longrightarrow Physics beyond the Standard Model

Oscillation Parameters: Current Status

[Snowmass NF01 Topical Group Report, 2212.00809]

Future Prospects and Wish-List

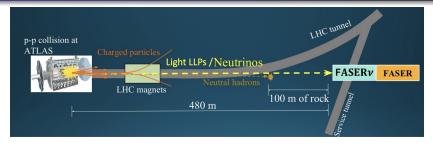
		Atmospheric Mass Ordering	$ heta_{23}$ Octant	$ \sin\delta \neq 0$ for 50% of δ		
JUNO	Optimistic	2030: 3σ	-	-		
	Conservative	2030: 2.5σ	-	-		
DUNE	Optimistic	2030: 5σ	2036: 3σ , 2040: 5σ	2035: 3σ , 2039: 5σ		
DUNE	Conservative	2032: 5σ	2040 : 2σ	2037: 3σ		
НК	Optimistic	2033 : 5σ	2033: 5σ	2029: 3σ , 2032: 5σ		
	Conservative	2032: 3σ	2034: 3σ	2029: 3σ , 2037: 5σ		
IceCube	Optimistic	2030 : 3 <i>σ</i> , 2033 : 4 <i>σ</i>	-	-		
ICeCube	Conservative	2033: 2σ	-	-		
KM3NeT	Optimistic	2026: 3σ , 2029 5σ	-	-		
	Conservative	2030: 3σ , 2032: 4σ	-	-		

[Snowmass NF01 Topical Group Report, 2212.00809]

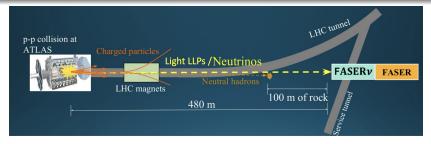
What else do we want to learn about neutrinos?

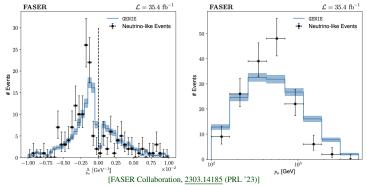
Future Prospects and Wish-List

		Atmospheric Mass Ordering	$ heta_{23}$ Octant	$\sin\delta \neq 0$ for 50% of δ	
JUNO	Optimistic	2030: 3σ	-	-	
	Conservative	2030: 2.5σ	-	-	
DUNE	Optimistic	2030: 5σ	2036: 3σ , 2040: 5σ	2035: 3σ , 2039: 5σ	
DUNE	Conservative	2032: 5σ	2040 : 2σ	2037: 3σ	
нк	Optimistic	2033 : 5σ	2033: 5σ	2029: 3σ , 2032: 5σ	
	Conservative	2032: 3σ	2034: 3σ	2029: 3σ , 2037: 5σ	
IceCube	Optimistic	2030 : 3 <i>σ</i> , 2033 : 4 <i>σ</i>	-	-	
ICeCube	Conservative	2033: 2σ	-	-	
KM3NeT	Optimistic	2026: 3σ , 2029 5σ	-	-	
	Conservative	2030: 3 σ , 2032: 4 σ	-	-	

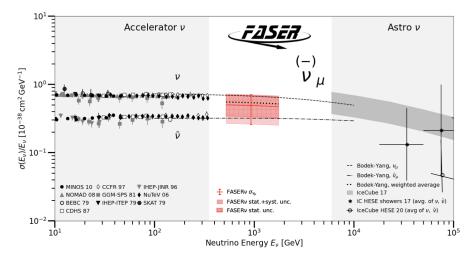

[Snowmass NF01 Topical Group Report, 2212.00809]

What else do we want to learn about neutrinos?

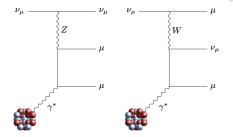

- How do they get mass? Dirac or Majorana (or something else)?
- Do they have more than 3 species? Must be 'sterile'! [LEP, hep-ex/0509008 (Phys. Rep.)]
- Do they have nonstandard interactions with matter or with themselves?
- Is the low-energy $\delta_{\rm CP}$ related to baryogenesis?
- Any connection to dark matter?

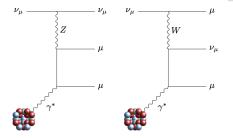

High-energy colliders can help us address some of these questions.

Seeing the 'Invisible' at LHC



Seeing the 'Invisible' at LHC

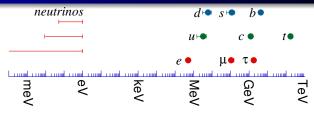

Cross Section Measurements


[FASER Collaboration, 2403.12520 (PRL '24)]

VERY important for validating neutrino-nucleus cross section models at different energies.

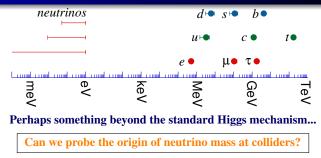
Rare SM Processes

Rare SM Processes



Name	Mass	Target	On(Off)-	$L_{\rm int, TeV \nu \rightarrow \mu\mu}^{-1}$		Neutrino	Triden	ts, νN ·	$\rightarrow \nu N'$	$\ell^+\ell^-$	
	[tons]	nucleus	-Axis		$\mu^+\mu^-$	$\left \mu^+ \mu^{f_s=0.5} \right $	e^+e^-	$\tau^+\tau^-$	$e^\pm \mu^\mp$	$e^{\pm}\tau^{\mp}$	$\mu^{\pm}\tau^{\mp}$
Run 3 (150 fb ⁻¹)											
$FASER\nu$	1.1	W	On	252	0.22	0.54	0.24	0.0029	0.83	0.035	0.060
SND@LHC	0.83	W	Off	252	0.024	0.06	0.03	0.0002	0.10	0.004	0.004
	HL-LHC (3 ab^{-1})										
$FASER\nu 2$	20	W	On	252	40	97	44	0.51	150	6.3	10
AdvSND@LHC (Far)	5	W	Off	252	2.2	5.3	2.7	0.02	9.0	0.3	0.4
FLArE	10	LAr	On	8.56	4.5	11	4.5	0.07	16	0.7	1.2
FLArE-100	100	LAr	On	8.56	26	63	27	0.37	91	4.1	6.8
NuTeV-like (Fe)	95	Fe	On	65.4	21	52	22	0.29	76	3.4	5.5
NuTeV-like (Pb)	135	Pb	On	154	48	116	57	0.45	190	7.0	10

[Altmannshofer, Makela, Sarkar, Trojanowski, Xie, Zhou, 2406.16803;


see also Bigaran, BD, Lopez Gutierrez, Machado, 2406.20067]

Probing Neutrino Mass Mechanism

Perhaps something beyond the standard Higgs mechanism...


Probing Neutrino Mass Mechanism

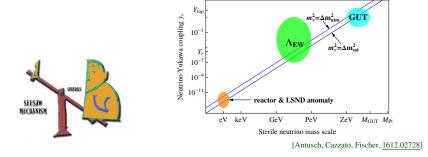
- New fermions, gauge bosons, and/or scalars messengers of neutrino mass.
- Rich phenomenology, both at hadron and lepton colliders, for messenger scale $\lesssim O(\text{few TeV})$. [Deppisch, BD, Pilaftsis, <u>1502.06541</u>; Cai, Han, Li, Ruiz, <u>1711.02180</u>]
- Complementarity with low-energy lepton number/flavor violation searches.
- Possible connections to other sectors (e.g. NSI and oscillation physics, anomalies, baryogenesis, dark matter).

SM-singlet Fermions

(aka sterile neutrinos/heavy neutrinos/heavy neutral leptons/right-handed neutrinos)

Snowmass Whitepaper, 2203.08039

Figure from Symmetry Magazine

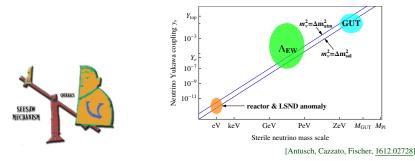

Motivated from Type-I Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]

• SM-singlet Majorana fermions (N):

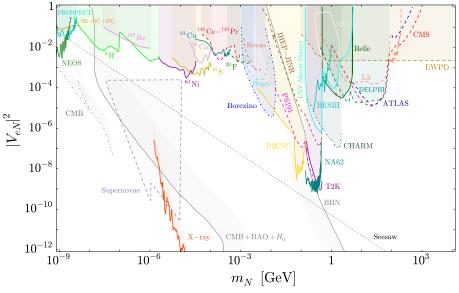
$$-\mathcal{L} \supset Y_{\nu}\overline{L}\phi^{c}N + \frac{1}{2}M_{N}\overline{N}^{c}N + \text{H.c.}$$

• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$, where $M_D = v Y_{\nu}$.

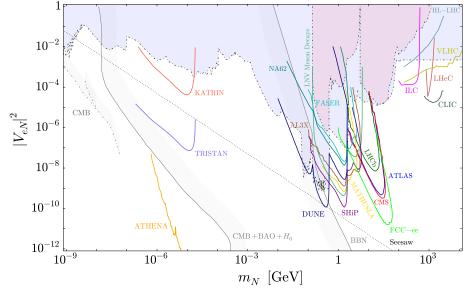

Motivated from Type-I Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]

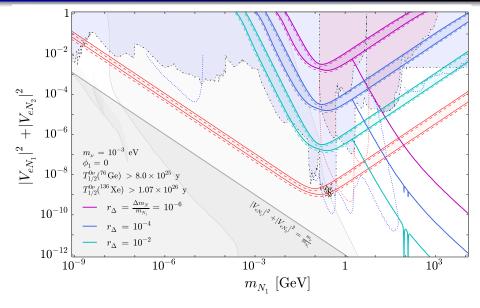
• SM-singlet Majorana fermions (N):


$$-\mathcal{L} \supset Y_{\nu}\overline{L}\phi^{c}N + \frac{1}{2}M_{N}\overline{N}^{c}N + \text{H.c.}$$

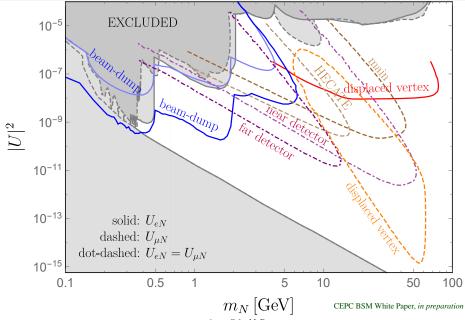
• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$, where $M_D = v Y_{\nu}$.


- Each N_i corresponds to $m_{\nu_i} \neq 0$. Need at least 2 (3 is better).
- Naturalness of Higgs mass suggests $M_N \lesssim 10^7$ GeV. [Vissani (hep-ph/9709409); Farina, Pappadopulo, Strumia (1303.7244); Clarke, Foot, Volkas (1502.01352); Bambhaniya, BD, Goswami, Khan, Rodejohann (1611.03827)]

Summary of Current Constraints on Sterile Neutrinos


Bolton, Deppisch, BD, 1912.03058 (JHEP '20); see http://sterile-neutrino.org for regular updates and public code

Future Prospects


Bolton, Deppisch, BD, 1912.03058 (JHEP '20); see http://sterile-neutrino.org for regular updates and public code

Neutrinoless Double Beta Decay

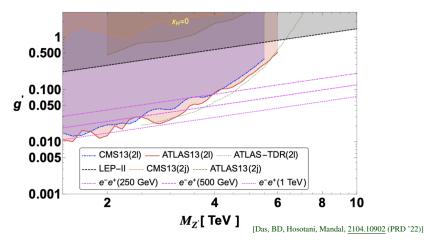
Bolton, Deppisch, BD, 1912.03058 (JHEP '20); see also Hernandez, Jones-Perez, Suarez-Navarro, 1810.07210 (EPJC '19)

Future Prospects at CEPC

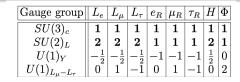
see previous talk by M. Drewes

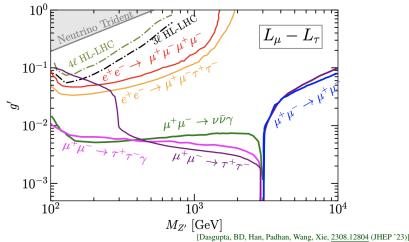
New Gauge Bosons

(W',Z')



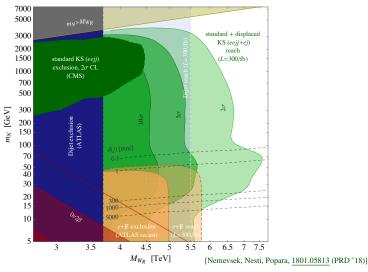
$U(1)_X$ at Future Colliders


Gauge group	q_L^i	u_R^i	d_R^i	ℓ^i_L	e_R^i	N_R^i	H	Φ
$\mathrm{S}U(3)_C$	3	3	3	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	1	2	1
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	0	1/2	0
$U(1)_X$	$\frac{1}{6}x_H + \frac{1}{3}x_\Phi$	$\frac{2}{3}x_H + \frac{1}{3}x_\Phi$	$-\frac{1}{3}x_H + \frac{1}{3}x_\Phi$	$-\frac{1}{2}x_H - x_\Phi$	$-x_H - x_\Phi$	$-x_{\Phi}$	$-\frac{x_H}{2}$	$2x_{\Phi}$


$U(1)_X$ at Future Colliders

Gauge group	q_L^i	u_R^i	d_R^i	ℓ^i_L	e_R^i	N_R^i	H	Φ
$SU(3)_C$	3	3	3	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	1	2	1
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	0	1/2	0
$U(1)_X$	$\frac{1}{6}x_H + \frac{1}{3}x_\Phi$	$\frac{2}{3}x_H + \frac{1}{3}x_\Phi$	$-\frac{1}{3}x_H + \frac{1}{3}x_\Phi$	$-\frac{1}{2}x_H - x_\Phi$	$-x_H - x_\Phi$	$-x_{\Phi}$	$-\frac{x_H}{2}$	$2x_{\Phi}$

$U(1)_{L_{\alpha}-L_{\beta}}$ at Future Colliders



$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

- Parity restoration at high scale. [Mohapatra, Pati (PRD '75); Senjanovic, Mohapatra (PRD '75)]
- A natural UV-completion of seesaw. [Mohapatra, Senjanovic (PRD '81)]
- New contributions to collider signals. [Keung, Senjanovic (PRL '83); Chen, BD, Mohapatra, 1306.2342 (PRD '13)]

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

- Parity restoration at high scale. [Mohapatra, Pati (PRD '75); Senjanovic, Mohapatra (PRD '75)]
- A natural UV-completion of seesaw. [Mohapatra, Senjanovic (PRD '81)]
- New contributions to collider signals. [Keung, Senjanovic (PRL '83); Chen, BD, Mohapatra, 1306.2342 (PRD '13)]

CP Violation in the RHN Sector

$$\begin{pmatrix} N_{e} \\ N_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{R} & \sin \theta_{R} e^{-i\delta_{R}} \\ -\sin \theta_{R} e^{i\delta_{R}} & \cos \theta_{R} \end{pmatrix} \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix}.$$

$$\mathcal{A}_{\alpha\beta} \equiv \frac{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) - \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) + \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}; \quad \mathcal{R}_{CP}^{(\ell)} \equiv \frac{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)} - \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}}{\frac{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}{\sigma(pp \to W_{R}^{+} \to \ell^{+}\ell^{+}jj)}} + \frac{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}{\sigma(pp \to W_{R}^{-} \to \ell^{-}\ell^{-}jj)}}$$

[BD, Mohapatra, Zhang, 1904.04787 (JHEP '19)]

٠

CP Violation in the RHN Sector

$$\begin{pmatrix} N_{e} \\ N_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{R} & \sin \theta_{R} e^{-i\delta_{R}} \\ -\sin \theta_{R} e^{i\delta_{R}} & \cos \theta_{R} \end{pmatrix} \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix}.$$

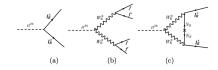
$$\mathcal{A}_{\alpha\beta} = \frac{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) - \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) + \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}; \quad \mathcal{R}_{CP}^{(\ell)} = \frac{\frac{\sigma(pp \rightarrow W_{R}^{+} \rightarrow \ell^{+}\ell^{+}jj)}{\sigma(pp \rightarrow W_{R}^{+} \rightarrow e^{+}\mu^{+}jj)} - \frac{\sigma(pp \rightarrow W_{R}^{-} \rightarrow \ell^{-}\ell^{-}jj)}{\sigma(pp \rightarrow W_{R}^{-} \rightarrow e^{-}\mu^{-}jj)}}{\frac{\sigma(pp \rightarrow W_{R}^{+} \rightarrow \ell^{+}\ell^{+}jj)}{\sigma(pp \rightarrow W_{R}^{+} \rightarrow e^{+}\mu^{+}jj)}} + \frac{\sigma(pp \rightarrow W_{R}^{-} \rightarrow \ell^{-}\ell^{-}jj)}{\sigma(pp \rightarrow W_{R}^{-} \rightarrow \ell^{-}\ell^{-}jj)}}$$

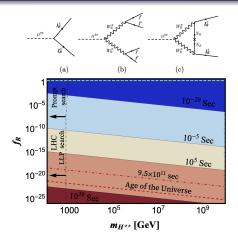
[BD, Mohapatra, Zhang, 1904.04787 (JHEP '19)]

• Lower bound on $M_{W_R} \gtrsim 15$ TeV from leptogenesis.

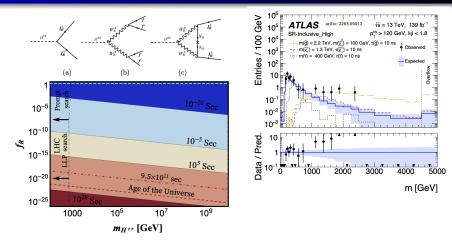
[Frere, Hambye, Vertongen (0806.0841); BD, Lee, Mohapatra (1503.04970)]

• FCC-hh will provide a direct collider test of thermal leptogenesis in LRSM.

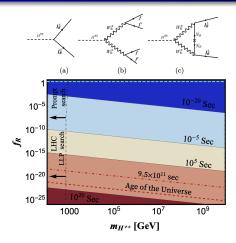

$$\phi(\mathbf{2},\mathbf{2},0) = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}, \qquad \delta_R(\mathbf{1},\mathbf{3},2) = \begin{pmatrix} \frac{\delta_R^+}{\sqrt{2}} & \delta_R^{++} \\ \delta_R^0 & -\frac{\delta_R^+}{\sqrt{2}} \end{pmatrix}$$

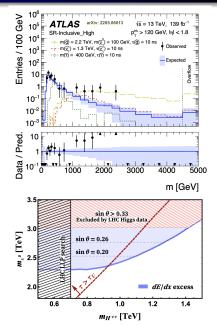

- $\langle \delta_R^0 \rangle \equiv v_R$ gives rise to RH Majorana neutrino masses \Longrightarrow type-I seesaw.
- 8 (14 if *δ_L* included) physical Higgs bosons: Rich phenomenology.
 [Gunion, Grifols, Mendez, Kayser, Olness (<u>PRD '89</u>); Chao, Luo, Xing, Zhou (<u>PRD '08</u>); Fileviez Perez, Han, Huang, Li, Wang (<u>PRD '08</u>); Kanemura, Yagyu, Yokoya (<u>PLB '13</u>); Bambhaniya, Chakrabortty, Gluza, Kordiaczyńska, Szafron (<u>JHEP '14</u>); BD, Mohapatra, Zhang (JHEP '16); Babu, Jana (PRD '17); BD, Ramsey-Musolf, Zhang (PRD '18); BD, Zhang (JHEP '18); ...]

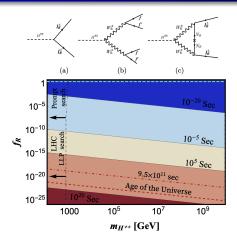
$$\phi(\mathbf{2},\mathbf{2},0) = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}, \qquad \delta_R(\mathbf{1},\mathbf{3},2) = \begin{pmatrix} \frac{\delta_R^+}{\sqrt{2}} & \delta_R^{++} \\ \delta_R^0 & -\frac{\delta_R^+}{\sqrt{2}} \end{pmatrix}$$


- $\langle \delta_R^0 \rangle \equiv v_R$ gives rise to RH Majorana neutrino masses \Longrightarrow type-I seesaw.
- 8 (14 if *δ_L* included) physical Higgs bosons: Rich phenomenology.
 [Gunion, Grifols, Mendez, Kayser, Olness (<u>PRD '89</u>); Chao, Luo, Xing, Zhou (<u>PRD '08</u>); Fileviez Perez, Han, Huang, Li, Wang (<u>PRD '08</u>); Kanemura, Yagyu, Yokoya (<u>PLB '13</u>); Bambhaniya, Chakrabortty, Gluza, Kordiaczyńska, Szafron (<u>JHEP '14</u>); BD, Mohapatra, Zhang (<u>JHEP '16</u>); Babu, Jana (<u>PRD '17</u>); BD, Ramsey-Musolf, Zhang (<u>PRD '18</u>); BD, Zhang (<u>JHEP '18</u>); ...]
- But FCNC constraints require the bidoublet scalars (H₁⁰, A₁⁰, H₁[±]) to be very heavy ≥ 15 TeV. [An, Ji, Mohapatra, Zhang (<u>NPB '08</u>); Bertolini, Maiezza, Nesti (<u>PRD '14</u>; <u>PRD '20</u>)] Need FCC-hh.
- Doubly-charged scalars $(H^{\pm\pm})$ constrained to be $\gtrsim 900$ (700) GeV from prompt (displaced) multilepton searches. [ATLAS, <u>2211.07505</u> (EPJC '23)]
- Neutral component (H_3^0) is hadrophobic and can be much lighter!
- Can even be a dark matter candidate (albeit highly fine-tuned).

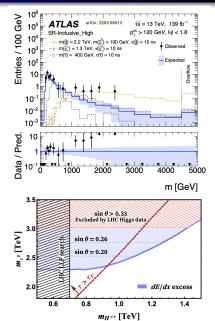
[Nemevsek, Senjanovic, Zhang, 1205.0844 (JCAP '12)]



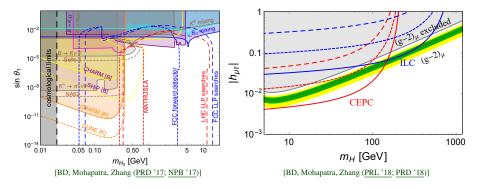

• Implications for HSCP searches at LHC.

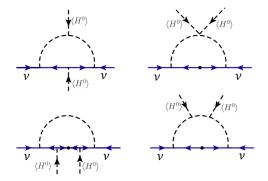


- Implications for HSCP searches at LHC.
- Can explain the ATLAS dE/dx excess! Akhmedov, BD, Jana, Mohapatra, <u>2401.15145</u> (PLB '24); see also Giudice, McCullough, Teresi, <u>2205.04473</u> (JHEP '22)



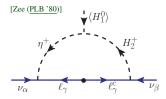
- Implications for HSCP searches at LHC.
- Can explain the ATLAS dE/dx excess! Akhmedov, BD, Jana, Mohapatra, <u>2401.15145</u> (PLB '24); see also Giudice, McCullough, Teresi, <u>2205.04473</u> (JHEP '22)


- Implications for HSCP searches at LHC.
- Can explain the ATLAS dE/dx excess! Akhmedov, BD, Jana, Mohapatra, <u>2401.15145</u> (PLB '24); see also Giudice, McCullough, Teresi, <u>2205.04473</u> (JHEP '22)

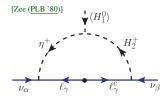

Catalyzed nuclear fusion to solve energy problem. [Akhmedov, 2109.13960 (PRD '21)]

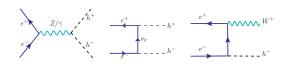
Neutral Scalar from $SU(2)_R$ Triplet

- Hadrophobic and allowed to be light (down to sub-GeV scale) by current constraints.
- Suppressed couplings to SM particles (either loop-level or small mixing).
- Necessarily long-lived at the LHC, with displaced vertex signals.
- Clean LFV signals at future lepton colliders.

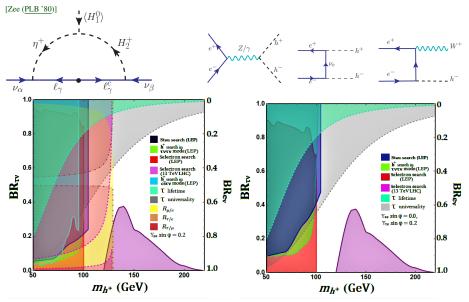


Radiative Models (One-loop Only)

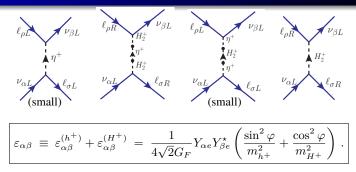



[Zee (PLB '80); Ma (PRL '98); Babu, Leung (NPB '01); de Gouvêa, Jenkins (PRD '08); Bonnet, Hirsch, Ota, Winter (JHEP '12); Cai, Clarke, Schmidt, Volkas (JHEP '14); Babu, BD, Jana, Thapa, (JHEP '20); Wang, Zhang, Zhou (JHEP '23); ...]

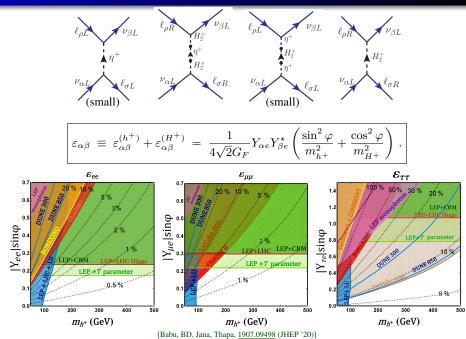
Singlet Charged Scalar in Zee Model



Singlet Charged Scalar in Zee Model

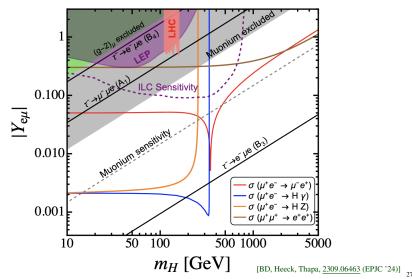


Singlet Charged Scalar in Zee Model

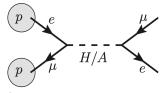


[Babu, BD, Jana, Thapa, 1907.09498 (JHEP '20)]

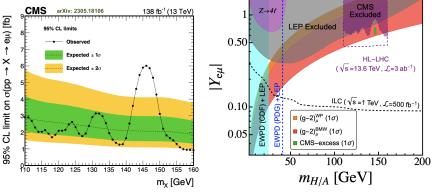
Nonstandard Neutrino Interactions



Nonstandard Neutrino Interactions



Extra Neutral Scalars in Zee Model


- Must have LFV couplings (to fit neutrino oscillation data).
- Stringent cLFV constraints. But depend on Yukawa texture.
- Future lepton colliders could provide an independent test.

LHC as a Lepton Collider

Using the lepton PDF of proton. [Buonocore, Nason, Tramontano, Zanderighi, 2005.06477 (JHEP '20)]

[[]Afik, BD, Thapa, 2305.19314 (PRD '24)]

- Understanding the neutrino mass mechanism will provide key insights into the BSM world.
- Current and future colliders provide an ideal testing ground for (sub) TeV-scale neutrino mass models.
- Can probe the messenger particles (new fermions/gauge bosons/scalars) in a wide range of open parameter space.
- Complementary to the low-energy precision measurements.
- Important implications for current experimental anomalies.