Introduction The Super-Natural and Effectively Super-Natural SUSY SUSY Dark Matter The Generized No-Scale \mathcal{F} -SU(\mathcal{S}) Conclusion

The Right-Handed Slepton Bulk Region for Dark Matter in Generalized No-scale \mathcal{F} -SU(5) with Effective Super-Natural Supersymmetry

Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences School of Physics, Henan Normal University

International Workshop on New Opportunities for Particle Physics 2024, July 19-21, 2024

References:

- T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B 740, 66 (2015) [arXiv:1408.4459 [hep-ph]].
- G. Du, T. Li, D. V. Nanopoulos and S. Raza, Phys. Rev. D
 92, no. 2, 025038 (2015) [arXiv:1502.06893 [hep-ph]].
- R. Ding, T. Li, F. Staub and B. Zhu, Phys. Rev. D 93, no.9, 095028 (2016) [arXiv:1510.01328 [hep-ph]].
- T. Li, S. Raza and X. C. Wang, Phys. Rev. D 93, no.11, 115014 (2016) [arXiv:1510.06851 [hep-ph]].
- X. Yin, J. A. Maxin, D. V. Nanopoulos and T. Li, Phys. Rev. D 109, no.11, 115031 (2024) [arXiv:2310.03622 [hep-ph]].
- ► I. Khan, W. Ahmed, T. Li and S. Raza, Phys. Rev. D 109, no.7, 075051 (2024) [arXiv:2312.07863 [hep-ph]].

Outline

Introduction

The Super-Natural and Effectively Super-Natural SUSY

SUSY Dark Matter

The Generized No-Scale \mathcal{F} -SU(5)

Conclusion

Outline

Introduction

The Super-Natural and Effectively Super-Natural SUSY

SUSY Dark Matter

The Generized No-Scale \mathcal{F} -SU(5)

Conclusion

The Standard Model

- ► The SM has been confirmed.
- ▶ However, it cannot be the final theory for particle physis.

Motivation for New Physics beyong the Standard Model

The convincing evidence

Dark energy; dark matter; neutrino masses and mixing; baryon asymmetry; inflation; ...

► Fine-tuning problems

cosmological constant problem; gauge hierarchy problem; strong CP problem; SM fermion masses and mixings; ...

Aesthetic problems

Interaction and fermion unification; gauge coupling unification; charge quantization; too many parameters;

The electroweak vacuum stability problem

The stability problem can be easily solved in the new physics models.

- New Physics beyond the SM!
- Question: why do we still believe in supersymmetry?

Motivations for Supersymmetry

- Supersymmetric Albgebra is a generalization of the Poincare Algebra; The most general symmetry of the S-matrix; The local supersymmetry includes gravity naturally, i.e., supergravity, etc.
- Supersymmetry provides a natural solution to the gauge hiearchy problem.
- Supersymmetry partially solves the cosmological constant problem: $M_{\rm Pl} \rightarrow M_{SUSY}$.
- Supersymmetry is a bridge between the promising low energy phenomenology and the high-energy fundamental physics such as the Grand Unified Theory and String Theory.

The Supersymmetric Standard Models (SSMs)

- ► Solving the gauge hierarchy problem
- ► Gauge coupling unification
- Radiatively electroweak symmetry breaking
- Natural dark matter candidates
- Electroweak baryogenesis
- ► Electroweak precision: R parity
- $\blacktriangleright \mu$ problem in the MSSM: $\mu H_d H_u$.

The Grand Unified Theories: SU(5) and SO(10)

- Unification of the gauge interactions, and unifications of the SM fermions
- ► Charge quantization
- Gauge coupling unification in the MSSM, and Yukawa unification
- Radiative electroweak symmetry breaking due to the large top quark Yukawa coupling
- Weak mixing angle at weak scale M_Z
- Neutrino masses and mixings by seesaw mechanism
- Prediction: dim-6 proton decay via heavy gauge boson exchange.

Problems

- Gauge symmetry breaking
- Doublet-triplet splitting problem
- Proton decay problem
- Fermion mass problem: $m_e/m_\mu=m_d/m_s$

String Models

- Calabi-Yau compactification of heterotic string theory
- Orbifold compactification of heterotic string theory
- D-brane models on Type II orientifolds
- ► Free fermionic string model builing
- ► *F*-Theory Model Building

Supersymmetry is a bridge between the promising low energy phenomenology and high-energy fundamental physics.

Particle Physics Paradigm

String Theory \rightarrow String Models \rightarrow GUTs \rightarrow SSMs \rightarrow SM

The LHC Supersymmetry Search Contraints:

- ► The gluino mass low bound is around 2.3 TeV in the CMSSM/mSUGRA
- ► The first two-generation squark mass low bounds are around 1.85 TeV.
- ► The stop/sbottom mass low bounds are around 1.3 TeV.
 The SSMs are fine-tuned!!!

Introduction

The Super-Natural and Effectively Super-Natural SUSY SUSY Dark Matter
The Generized No-Scale F-SU(5)
Conclusion

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

Λ	farch 2023					$\sqrt{s} = 13 \text{ leV}$
	Model	Signature J.	£ dt [fb	Mass limit		Reference
90	89. 4-m ²	0 ν, μ 2-6 jets E ^{min} mono-jet 1-3 jets E ^T _{frin}	139 139	(1.6 to Degen) 1.0 1.85 (0x Degen) 0.9	$m(\tilde{t}_1^0) \sim 400 \text{ GeV}$ $m(\tilde{q}) \sim m(\tilde{t}_1^0) = 5 \text{ GeV}$	2010.14293 2102.10874
inclusive Searches	ĝĝ. ĝ→φφξ ⁰ 1	0 e, μ 2-6 jets E ^{min} _γ	139	8 2: 8 Forbidden 1.15-1.95	$m(\tilde{r}_1^0)=0 \text{ GeV}$ $m(\tilde{r}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293
	$gg, g \rightarrow qqW\bar{\chi}_1^0$	1 e, μ 2-6 jets	139	₹ 22	m(f ⁰)-:500 GeV	2101.01629
	$\hat{g}\hat{g}, \hat{g} \rightarrow q\hat{q}(\ell\ell)\hat{g}^{0}$	er, μμ 2 jets E ^{min.}	139	₹ 22	m(f ⁰)<700 GeV	2204.13072
	$gg, g \rightarrow gqWZ \tilde{\chi}_1^0$	$0 e, \mu$ 7-11 jets E_y^{min} SS e, μ 6 jets	139 139	2 1.97 2 1.15	m(t ²) <500 GeV m(t)-m(t1)::200 GeV	2008.06032 1909.08457
2	gg, g→stk ⁰	SS e, μ 3 b E_{γ}^{min} SS e, μ 6 jets	139 139	₹ 1.25	45 m(r ₁)::500 GeV m(z)-m(r ₁)::300 GeV	2211.08028 1909.08457
n. squaks	$\delta_1 b_1$	0 e, μ 2 b E _γ ^{min}	139	$\delta_1 = 0.68$	m(r̃ ₁)<400 GeV 10 GeV<Δm(r̃ ₁ , r̃ ₁)<20 GeV	2101.12527 2101.12527
	$\hat{b}_1\hat{b}_1, \hat{b}_1 \rightarrow b\hat{t}_2^0 \rightarrow bb\hat{t}_1^0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139 139	Ď ₁ 0.13-0.85	$\Delta m(\hat{k}_{2}^{0}, \hat{k}_{1}^{0}) = 130 \text{ GeV}, m(\hat{k}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\hat{k}_{2}^{0}, \hat{k}_{1}^{0}) = 130 \text{ GeV}, m(\hat{k}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 2103.08189
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_1^0$	$0.1 e, \mu \ge 1 \text{jet} E_T^{\text{min}}$ $1 e, \mu 3 \text{jets/1} b E^{\text{min}}$	139	i ₁ 1.25	m(k̃1)=1 GeV	2004.14060, 2012.03799
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{X}_1^0$		139	ži Forbidden 0.65 Ži Forbidden 1.4	m(E)=500 GeV m(E)=500 GeV	2012.03799 2108.07665
3" gan.	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1b\nu, \tilde{\tau}_1 \rightarrow \tilde{\tau}\tilde{G}$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_1^0$		36.1	ži Forbidden 1.4 2 0.85	m(r ₁)=scoGeV	1505.07665
33		0 ε, μ mono-jet E ^{fain}	139	ī ₁ 0.55	m(i,2)-m(i)=5 GeV	2102.10874
	$l_1 l_1, l_1 \rightarrow l_1^2 l_2, \tilde{k}_2^0 \rightarrow Z/h \tilde{k}_1^0$ $l_2 l_2, l_2 \rightarrow l_1 + Z$	$1-2 e, \mu$ $1-4 b$ E_T^{min} $3 e, \mu$ $1 b$ E_T^{min}	139 139	r 1 0.067-1.18 r 2 Forbidden 0.86	$m(\tilde{t}_1^0)$:500 GeV $m(\tilde{t}_1^0)$:360 GeV; $m(\tilde{t}_1)$: $m(\tilde{t}_1^0)$:40 GeV	2006.05880 2006.05880
EW	$\tilde{\chi}_1^* \tilde{\chi}_2^0$ via WZ	$\begin{array}{ccc} \text{Multiple $\ell/$ jets} & E_{\underline{I}_{\rm dist}}^{\rm mins} \\ ev, \mu\mu & \geq 1 \text{ jet} & E_{\underline{I}}^{\rm mins} \end{array}$	139 139	$\hat{x}_{1}^{a}/\hat{x}_{1}^{a}$ 0.96 $\hat{x}_{1}^{b}/\hat{x}_{2}^{b}$ 0.206	$m(\tilde{\epsilon}_1^0)$:0, wino-bino $m(\tilde{\epsilon}_1^0)$:0 GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$\hat{X}_{1}^{*}\hat{X}_{1}^{*}$ via WW	$2 e, \mu$ E_T^{min}	139	£" 0.42	m(£1):0, wino-bino	1908.08215
	$\hat{X}_{1}^{a}\hat{X}_{2}^{b}$ via Wh	Multiple //jets E_{γ}^{max}	139	$\hat{X}_{1}^{b}/\hat{X}_{2}^{b}$ Forbidden 1.06	m(x1)::70 GeV, wino-bino	2004.10894, 2108.07586
	ξ†ξ† via ξ _L /ν	2 e, μ E ^{miss}	139	x ² 1.0	$m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{k}_{\perp}^{*})+m(\tilde{k}_{\perp}^{*}))$	1908.08215
	$\tau \tau$, $\tau \rightarrow \tau \tilde{\chi}_{1}^{0}$ $l_{LR}l_{LR}$, $l \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 τ E ^{min.} 2 ε, μ 0 jets E ^{min.}	139	† [f _L , f _{R,L}] 0.16-0.3 0.12-0.39 7 0.7	m(E ⁰)=0 m(E ⁰)=0	1911.06550
	clecte c→cc1	ev , $\mu\mu$ ≥ 1 jet E_T^{faint}	139	7 0.256	m(t)-m(t):10 GeV	1911.12606
	$\hat{H}\hat{H}, \hat{H}\rightarrow h\hat{G}/Z\hat{G}$	$0 e, \mu \ge 3 b$ E_T^{min} $4 e, \mu$ 0 jets E_T^{min}	36.1	B 0.13-0.23 0.29-0.88	$BR(\hat{x}_{i}^{0} \rightarrow hG)=1$	1805.04030
		4 e, μ 0 jets E ^{tion} 0 e, μ ≥ 2 large jets E ^{tion}	139	II 0.55 II 0.45-0.93	$BR(\tilde{x}_{\delta}^{i} \rightarrow ZG)=1$ $BR(\tilde{x}_{1}^{i} \rightarrow ZG)=1$	2103.11684 2108.07586
		$2 e, \mu \ge 2 \text{ jets } E_T^{\text{min}}$	139	ii 0.77	$BR(\tilde{r}_{i}^{0} \rightarrow Z\tilde{G})_{i}BR(\tilde{r}_{i}^{0} \rightarrow R\tilde{G})_{i}0.5$	2204.13072
	Direct $\hat{x}_{i}^{*}\hat{x}_{i}^{*}$ prod., long-lived \hat{x}_{i}^{*}	Disapp. bik 1 jet Ey	139		Pres West	2001 00472
Long-lived particles			139	$\frac{\hat{x}_{b}^{*}}{\hat{x}_{1}^{*}}$ 0.21	Pure higgsino	2201.02472
	Stable g R-hadron	pixel dE/dx E_T^{min} pixel dE/dx E_T^{min} Displ. lep E_T^{min}	139	₹ 2.05		2205.06013
	Metastable ji R-hadron, ji→qqi ⁰	pixel dE/dx E _T E _T	139	§ [r(§) =10 rs] 2.2	m(₹°1)=100 GeV	2205.06013
	ll, l→tG	Displ. lep E ^{miss}	139	2,µ 1 0.34	r(i) = 0.1 ms r(i) = 0.1 ms	2011.07812 2011.07812
		pixel dE/dx E_{γ}^{min}	139	1 0.36	r(č) = 10 ms	2205.06013
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{+}\rightarrow Zt\rightarrow \ell\ell\ell$	3 e, µ	139	$\hat{x}_{1}^{z}/\hat{x}_{1}^{0}$ [BR(Zz)=1, BR(Ze)=1] 0.625 1.05	Pure Wino	2011.10543
	$\tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\tau$	$4 e, \mu$ 0 jets E_T^{min}	139	$\hat{x}_{1}^{a}/\hat{x}_{2}^{b} = [\lambda_{10} \pm 0, \lambda_{111} \pm 0]$ 0.95 1.55	m(F ⁰ ₁):200 GeV	2103.11684
	$\hat{g}\hat{g}, \hat{g} \rightarrow qg\hat{t}_{1}^{0}, \hat{t}_{1}^{0} \rightarrow qgq$ $\hat{u}, \hat{t} \rightarrow d\hat{t}_{1}, \hat{t}_{2}^{0} \rightarrow drs$	4-5 large jets	36.1	≥ (π(ξ ⁰ ₁)-200 GeV, 1100 GeV) 1.3 1.9	Large J''	1804.03568
Ab.	$\widetilde{H}, \widetilde{t} \rightarrow t\widetilde{K}_{1}^{*}, \widetilde{K}_{1}^{*} \rightarrow tbs$	Multiple	36.1	i (t ₁₀ =2e-4, 1e-2) 0.55 1.05 i Forbidden 0.95	m(k ³)+200 GeV, bino-like	ATLAS-CONF-2018-003
윤	ii , $i \rightarrow b\bar{X}_{1}^{*}$, $\bar{X}_{1}^{*} \rightarrow bbx$ i_1i_1 , $i_2 \rightarrow bx$	≥ 4b 2 iets + 2 b	139	7 Forbidden 0.95	m(k̃1°)⇒500 GeV	2010.01015 1710.07171
	$i_1i_1, i_1\rightarrow bx$ $\tilde{i}_1\tilde{i}_1, \tilde{i}_1\rightarrow q\ell$	2 e, µ 2 b	36.7	r ₁ [eq. ht] 0.42 0.61 7. 0.4-1.45	BPV/.→br/hu)>20%	1710.07171
		1 µ DV	136	T ₁ [1e-10 < X ₁₁ < 1e-8, 3e-10 < X ₁₁ < 3e-9] 1.0 1.6	BR(r ₁ -4µ):100%, cost,=1	2003.11956
	$\tilde{\chi}_1^a/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0{\rightarrow}tbz, \tilde{\chi}_1^o{\rightarrow}bbz$	1-2 r, µ ≥6 jets	139	ξ ⁰ ₁ 0.2-0.32	Pure higgaino	2105.09509

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Mass scale [TeV]

10-1

Interesting Questions in Supersymmetry Phenomenology

- Can we solve the supersymmetry electroweak fine-tuning problem natually?
- Do we still have the bulk region for dark matter?
- Can we probe this entire bulk region at the future experiments?

Outline

Introduction

The Super-Natural and Effectively Super-Natural SUSY

SUSY Dark Matter

The Generized No-Scale \mathcal{F} -SU(5)

Conclusion

High Eneryg Fine-Tuning Definition

Fine-tuning Definition ¹: the quantitative measure $\Delta_{\rm FT}^{\rm EENZ-BG}$ for fine-tuning is the maximum of the logarithmic derivative of M_Z with respect to all the fundamental parameters a_i at the GUT scale

$$\Delta_{\mathrm{FT}}^{\mathrm{EENZ-BG}} = \mathrm{Max}\{\Delta_{i}^{\mathrm{GUT}}\}\;, \quad \Delta_{i}^{\mathrm{GUT}} = \left|\frac{\partial \mathrm{ln}(\textit{M}_{\textit{Z}})}{\partial \mathrm{ln}(\textit{a}_{i}^{\mathrm{GUT}})}\right|\;.$$

¹ J. R. Ellis, K. Enqvist, D. V. Nanopoulos and F. Zwirner, Mod. Phys. Lett. A 1, 57 (1986); R. Barbieri and G. F. Giudice, Nucl. Phys. B 306, 63 (1988).

Question: Super-Natural Supersymmetry

Can we propose a supersymmetry scenario whose the EENZ-BG fine-tuning measure is automatically 1 or order 1 ($\mathcal{O}(1)$)?

Fundamental physics principles: simplicity and naturalness.

Super-Natural Supersymmetry 2

Fine-Tuning Definition:

$$\Delta_{\mathrm{FT}} = \mathrm{Max}\{\Delta_i^{\mathrm{GUT}}\}\;, \quad \Delta_i^{\mathrm{GUT}} = \left|\frac{\partial \mathrm{ln}(M_Z)}{\partial \mathrm{ln}(a_i^{\mathrm{GUT}})}\right|\;.$$

► Natural Solution:

$$M_Z^n = f_n \left(\frac{M_Z}{M_*}\right) M_*^n$$
.

$$\frac{\partial \ln(M_Z^n)}{\partial \ln(M_*^n)} \simeq \frac{M_*^n}{M_Z^n} \frac{\partial M_Z^n}{\partial M_*^n} \simeq \frac{1}{f_n} f_n \simeq \mathcal{O}(1) .$$

For no-scale supergravity and M-theory on S^1/Z_2 , we have $M_* = M_{1/2}$ and $M_* = M_{3/2}$, respectively.

²T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B **740**, 66 (2015) [arXiv:1408.4459 [hep-ph]]; G. Du, T. Li, D. V. Nanopoulos and S. Raza, Phys. Rev. D **92**, no. 2, 025038 (2015) [arXiv:1500.6893 [hep-ph]]; T. Li, S. Raza and X. C. Wang, Phys. Rev. D **93**, no. 11, 115014 [arXiv:1500.6893 [hep-ph]].

The Super-Natural Supersymmetry and Its Generalizations

- ► The Kähler potential and superpotential can be calculated in principle or at least inspired from a fundamental theory such as string theory with suitable compactifications. In other words, one cannot add arbitrary high-dimensional terms in the Kähler potential and superpotential.
- ► There is one and only one chiral superfield or modulus whose F-term breaks supersymmetry. And all the supersymmetry breaking soft terms are obtained from the above Kähler potential and superpotential.
- All the other mass parameters, if there exist such as the μ term in the MSSM, must arise from supersymmetry breaking.

Effectively Super-Natural Supersymmetry ³

A supersymmetry breaking scenario is natural if all the fundamental parameters that have large EENZ-BG fine-tuning measures are correlated.

³R. Ding, T. Li, F. Staub and B. Zhu, Phys. Rev. D **93**, no.9, 095028 (2016) [arXiv:1510.01328 [hep-ph]]. <u>■</u>

Outline

Introduction

The Super-Natural and Effectively Super-Natural SUSY

SUSY Dark Matter

The Generized No-Scale \mathcal{F} -SU(5)

Conclusion

SUSY Dark Matter Scenarios

► Bulk region

The sfermions (supersymmetric partners of the SM fermions) are light.

▶ The Z/Higgs funnels or Z/Higgs resonances

The LSP neutralino mass is about half of the masses of the Z boson, SM Higgs, CP-even Higgs H_0 , or CP-odd Higgs A_0 .

Coannihilations

The sfermion masses are close to the LSP neutralino.

Mixing scenario or well-tempered scenario

The LSP neutralino has enough Wino or Higgsino component to significantly increase the annihilation

SUSY Dark Matter Scenarios

- ▶ The bulk region may be the most natural.
- Because the LHC SUSY searches have given strong constraints on the SUSY parameter space, the possible bulk region is the light right-handed sleptons and LSP neutralino annihilations.
- ► This is an interesting scenario for the SUSY searches at the FCC_{pe} and CEPC.
- ► Question: Is it possible to have such kind of viable bulk region for dark matter in a natural SUSY scenario?

Outline

Introduction

The Super-Natural and Effectively Super-Natural SUSY

SUSY Dark Matter

The Generized No-Scale \mathcal{F} -SU(5)

Conclusion

\mathcal{F} -SU(5) Models

- ► The gauge group $SU(5) \times U(1)_X$ can be embedded into SO(10) model.
- ▶ Generator $U(1)_{Y'}$ in SU(5)

$$T_{\mathrm{U}(1)_{\mathrm{Y}'}} = \mathrm{diag}\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right) .$$

Hypercharge

$$Q_Y = \frac{1}{5} (Q_X - Q_{Y'}) \ .$$

SM fermions

$$F_i = (\mathbf{10}, \mathbf{1}), \ \overline{f_i} = (\overline{\mathbf{5}}, -\mathbf{3}), \ \overline{l_i} = (\mathbf{1}, \mathbf{5}),$$

$$F_i = (Q_i, D_i^c, N_i^c), \ \overline{f_i} = (U_i^c, L_i), \ \overline{l_i} = E_i^c.$$

► Higgs particles:

$$H = (\mathbf{10}, \mathbf{1}), \ \overline{H} = (\overline{\mathbf{10}}, -\mathbf{1}), \ h = (\mathbf{5}, -\mathbf{2}), \ \overline{h} = (\overline{\mathbf{5}}, \mathbf{2}),$$

$$H = (Q_H, D_H^c, N_H^c), \ \overline{H} = (\overline{Q}_{\overline{H}}, \overline{D}_H^c, \overline{N}_H^c),$$

$$h = (D_h, D_h, D_h, H_d), \ \overline{h} = (\overline{D}_{\overline{h}}, \overline{D}_{\overline{h}}, \overline{D}_{\overline{h}}, H_u).$$

► Flip

$$U \leftrightarrow D$$
 , $N \leftrightarrow E$, $H_d \leftrightarrow H_u$.

Symmetry breaking:

Superpotential

$$W_{\text{GUT}} = \lambda_1 H H h + \lambda_2 \overline{H H h} + \Phi(\overline{H} H - M_{\text{H}}^2)$$
.

- ► There is only one F-flat and D-flat direction along the N_H^c and \overline{N}_H^c directions: $< N_H^c > = < \overline{N}_H^c > = M_H$.
- ► The doublet-triplet splitting due to the missing partner mechanism
- ► No dimension-5 proton decay problem.

Flipped $SU(5) \times U(1)_X$ Models: ⁶

- Doublet-triplet splitting via missing partner mechanism ⁴.
- No dimension-five proton decay problem.
- Little hierarchy problem in string models: $M_{\rm String} \sim 20 \times M_{\rm GUT}$

$$M_{\rm String} = g_{\rm String} \times 5.27 \times 10^{17} \text{ GeV}$$
.

► Testable flipped $SU(5) \times U(1)_X$ models: TeV-scale vector-like particles ⁵.

⁴I. Antoniadis, J. R. Ellis, J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B **194**, 231 (1987).

⁵J. Jiang, T. Li and D. V. Nanopoulos, Nucl. Phys. B **772**, 49 (2007).

⁶S. M. Barr, Phys. Lett. B **112**, 219 (1982); J. P. Derendinger, J. E. Kim and D. V. Nanopoulos, Phys. Lett. B **139**, 170 (1984).

Flipped $SU(5) \times U(1)_X$ Models:

- ► Four-dimensional free-fermionic string construction ⁷.
- ► F-theory model building ⁸.
- Heterotic string constructions: Calabi-Yau ⁹; Orbifold ¹⁰.
- ► Orbifold GUTs ¹¹.

⁷ J. L. Lopez, D. V. Nanopoulos and K. j. Yuan, Nucl. Phys. B **399**, 654 (1993).

⁸C. Beasley, J. J. Heckman and C. Vafa, JHEP **0901**, 059 (2009); J. Jiang, T. Li, D. V. Nanopoulos and D. Xie, Phys. Lett. B **677**, 322 (2009); Nucl. Phys. B **830**, 195 (2010).

⁹ A. E. Faraggi, R. S. Garavuso and J. M. Isidro, Nucl. Phys. B **641**, 111 (2002)

¹⁰ J. E. Kim and B. Kyae, Nucl. Phys. B **770**, 47 (2007).

¹¹S. M. Barr and I. Dorsner, Phys. Rev. D 66, 065013 (2002).

\mathcal{F} -SU(5) Models

- To achieve the string scale gauge coupling unification, we introduce sets of vector-like particles in complete $SU(5) \times U(1)_X$ multiplets, whose contributions to the one-loop beta functions of the $U(1)_Y$, $SU(2)_L$ and $SU(3)_C$ gauge symmetries, Δb_1 , Δb_2 and Δb_3 respectively, satisfy $\Delta b_1 < \Delta b_2 = \Delta b_3$.
- ➤ To avoid the Landau pole problem for the gauge couplings, we can only introduce the following two sets of vector-like particles around the TeV scale, which could be observed at the LHC

$$Z1: XF = (\mathbf{10}, \mathbf{1}) \equiv (XQ, XD^c, XN^c), \overline{XF} = (\overline{\mathbf{10}}, -\mathbf{1});$$

 $Z2: XF, \overline{XF}, XI = (\mathbf{1}, -\mathbf{5}), \overline{XI} = (\mathbf{1}, \mathbf{5}) \equiv XE^c.$

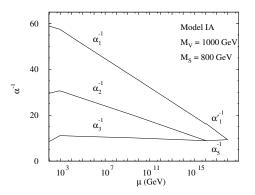


Figure: Gauge coupling unification in the Type IA model.

No-Scale Supergravity ¹²:

- ► The vacuum energy vanishes automatically due to the suitable Kähler potential.
- At the minimum of the scalar potential, there are flat directions which leave the gravitino mass $M_{3/2}$ undertermined.
- ▶ The super-trace quantity $Str \mathcal{M}^2$ is zero at the minimum.

$$K = -3\ln(T + \overline{T} - \sum_{i} \overline{\Phi}_{i} \Phi_{i}).$$

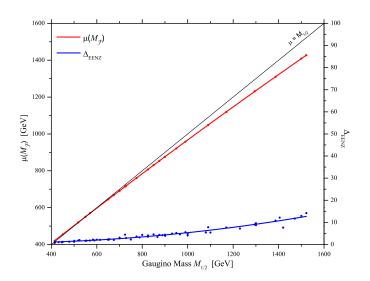
¹² E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett. B 133, 61 (1983); A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. 145, 1 (1987).

No-Scale Supergravity

No-scale supergravity can be realized in the compactification of the weakly coupled heterotic string theory 13 and the compactification of M-theory on S^1/Z_2 at the leading order 14 .

¹³E. Witten, Phys. Lett. B **155**, 151 (1985).

¹⁴T. Li, J. L. Lopez and D. V. Nanopoulos, Phys. Rev. D **56**, 2602 (1997). □ ▶ ∢ 👼 ▶ ∢ 👼 ▶ 🧸 🥏 🔻 🔮


No-Scale Supergravity:

- ▶ mSUGRA/CMSSM: $M_{1/2}$, M_0 , A, tan β , sign(μ).
- No-scale boundary condition: $M_{1/2} \neq 0$, $M_0 = A = B_{\mu} = 0$
- Natural solution to CP violation and FCNC problem.
- Disfavored by phenomenology
 The light stau is the LSP if we run the RGEs from the traditional GUT scale.
- ▶ No-scale \mathcal{F} -SU(5)

The Bino dominant neutralino is the LSP if we run the RGEs from the string scale.

Miracle of Vector-Like Particles

- ► String-scale gauge coupling unification.
- Lifting the lightest CP-even Higgs boson mass.
- ▶ The proton decay $p \rightarrow e^+\pi^0$ from the heavy gauge boson exchange is within the reach of the future Hyper-Kamiokande experiments for a majority of the most plausible parameter space.
- Explaining the muon anomalous magnetic moment easily due to the chirality flip if it is needed.
- ► Special sparticle spectra.

The No-Scale Supergravity and Its Generalization

- ► No-Scale Supergravity is only valid at tree level.
- ► There exist corrections to the gauge kinetic functions and Kähler potential at one loop.
- ► The Generalized No-Scale Supergravity: $M_{1/2} \neq 0$, $M_0 \sim \mathcal{O}(10^{-2}) M_{1/2}$, $A \sim \mathcal{O}(10^{-2}) M_{1/2}$, $B_\mu \sim \mathcal{O}(10^{-2}) M_{1/2}$.

The Generalized No-Scale Supergravity for \mathcal{F} -SU(5)

- At the $SU(5) \times U(1)_X$ unification scale (string scale), we vary the SU(5) gaugino mass M_5 from 1200 GeV to 5000 GeV, yielding a large gluino mass.
- ▶ To produce a light Bino, we vary the $U(1)_X$ gaugino mass M_{1X} from 100 GeV to 600 GeV.
- Note that No-Scale SUGRA is obtained at tree level and can be violated at one loop, so we assume the universal supersymmetry breaking soft mass M_0 and trilinear soft term A are smaller than about 1% of M_5 . For simplicity, we take A=0.
- ▶ We span $\tan \beta$ from 2 to 65, and the vector-like particle mass scale M_V from 1 TeV to 10 TeV.

The Bino Mass

$$\frac{M_1}{\alpha_1} \equiv \frac{24}{25} \frac{M_{1X}}{\alpha_{1X}} + \frac{1}{25} \frac{M_5}{\alpha_5} \; ,$$

where α_i are the gauge couplings at their respective scales.

Effective Super-Natural SUSY

- ► A supersymmetry breaking scenario is natural if all the fundamental parameters that have large EENZ-BG fine-tuning measures are correlated.
- ▶ In our generalized No-Scale SUGRA, the fine-tuning measures for the SUSY breaking soft terms M_{1X} , M_0 , and A_0 are all small, and only M_5 might have a large fine-tuning measure.
- ► Our generalized No-Scale SUGRA is approximately Super-Natural SUSY, and thus indeed natural.

 More specifically, it is only a small deviation from Super-Natural SUSY, and hence the simplest scenario for Effective Super-Natural SUSY.

Experimental Constraints

- Require neutralino LSP
- Constraints on the masses of the gluino and first/second generation squarks: $m_{\tilde{g}} \gtrsim 2.2 \text{ TeV}$, $m_{\tilde{q}} \gtrsim 2.0 \text{ TeV}$.
- ▶ Rare B-meson decay constraint $1.6 \times 10^{-9} \le$ BR($B_s^0 \to \mu^+ \mu^-$) $\le 4.2 \times 10^{-9}$ and branching ratio of rare b-quark decay of $2.99 \times 10^{-4} \le$ BR($b \to s \gamma$) $\le 3.87 \times 10^{-4}$.
- ▶ The Higgs boson mass range 122 GeV $\leq m_h \leq 128$ GeV.
- Constraints on spin-independent DM-nuclei cross sections from the XENONnT and LUX-ZEPLIN experiments.
- ▶ Relic density of cold DM measured by the 5σ Planck 2018 of $0.114 \leq \Omega_{\rm DM} h^2 \leq 0.126$ where below this range is regarded as under-saturated and above is over-saturated.

Suppression of Coannihilation

With the absent of coannihilation, we have

$$\Omega_{\tilde{B}} h^2 = 1.3 \times 10^{-2} \left(\frac{m_{\tilde{e}_R}}{100 {\rm GeV}} \right)^2 \frac{(1+r)^4}{r(1+r^2)} \left(1 + 0.07 \log \frac{\sqrt{r} 100 {\rm GeV}}{m_{\tilde{e}_R}} \right) \; ,$$

where $r \equiv M_1^2/m_{\tilde{e}_R}^2$.

- MicrOMEGAs 2.1, with and without coannihilation
- $ightharpoonup \mathcal{R}_{\phi} \equiv (m_{\phi} m_{ ilde{\chi}_1^0})/m_{ ilde{\chi}_1^0} ext{ with } \phi = ilde{e}_R ext{ or } ilde{ au}_1.$
- ▶ $\mathcal{R}_{\phi} = 5 8\%$, deviates from the coannihilation $\geq 50\%$.
- ho $\mathcal{R}_{\phi}=10-12\%$, co-annihilation 20-30%, annihilation 70-80%.

Bulk Region Condition

- ▶ 99.9% Bino-like LSPs are selected to prohibit large annihilation cross sections induced by Higgsino or Wino components.
- ho $2m_{\tilde{\chi}_1^0} \ll m_{H^0}, m_{A^0}$ and $2m_{\tilde{\chi}_1^0} \gg m_h$ are enforced to avoid the "Higgs funnel".
- $ilde{ au}_1$ and $ilde{e}_R$ are naturally light, so coannihilation processes are negligible when $\mathcal{R}_{ ilde{ au}_1}\equiv rac{m_{ ilde{ au}_1}-m_{ ilde{ au}_1^0}}{m_{ ilde{ au}_1^0}}\gtrsim 10\%$ and $m_{ ilde{ au}_1}-m_{ ilde{ au}_1^0}$

$$\mathcal{R}_{ ilde{e}_R} \equiv rac{m_{ ilde{e}_R} - m_{ ilde{\chi}^0_1}}{m_{ ilde{\chi}^0_1}} \gtrsim 10\%.$$

▶ Require the SM Higgs resonance to vanish, which transpires when $|\mu|^2 \gg M_Z^2$, via the coupling $g_{h\tilde{\chi}_1^0\tilde{\chi}_1^0} \propto \frac{M_Z(2\mu\cos\beta+M_1)}{\mu^2-M_1^2}$.

The Criteria for Right-Handed Slepton Bulk Region

- ▶ The ratio of the mass difference $\mathcal{R}_{\phi} \equiv (m_{\phi} m_{\tilde{\chi}_1^0})/m_{\tilde{\chi}_1^0}$ is more important than the absolute mass difference, where ϕ is $\tilde{\tau}_1$ (light stau) or \tilde{e}_R (light selectron).
- Comprehensive numerical studies that we present in this work show that $\mathcal{R}_{\phi}\gtrsim 10\%$ is a conservative criterion to formulate the bulk region, *i.e.*, the observed dark matter density is obtained via traditional annihilations, not from coannihilations or resonances, etc.

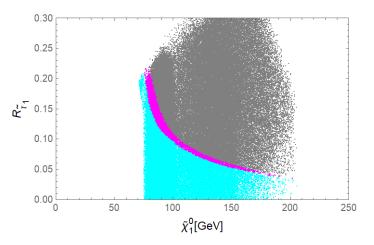


Figure: Bulk region in Generalized No-Scale *F-SU*(5). Cyan, magenta, gray points correspond to under-saturated, saturated, over-saturated DM relic density.

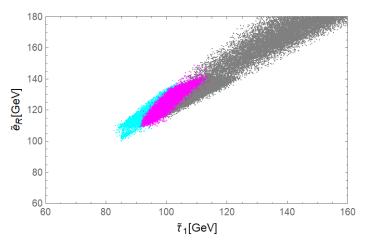


Figure: Light right-handed slepton masses in the Generalized No-Scale \mathcal{F} -SU(5) bulk region. Cyan, magenta, gray points correspond to under-saturated, saturated, over-saturated DM relic density with $\mathcal{R}_{\tilde{\tau}_1} \gtrsim 10\%$.

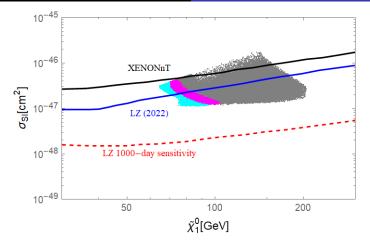


Figure: Generalized No-Scale \mathcal{F} -SU(5) bulk region LSPs plot in reference to spin-independent DM-nuclei cross sections from XENONnT and LUX-ZEPLIN. Cyan, magenta, gray points correspond to under-saturated, saturated, over-saturated DM relic density with $\mathcal{R}_{\tilde{\tau}_1} \gtrsim 10\%$. We underscore the significance of the 1000-day LUX-ZEPLIN run that should fully probe the \mathcal{F} -SU(5) bulk and about 50% of the pMSSM bulk (not shown).

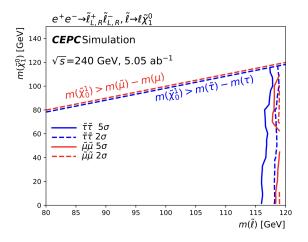


Figure: CEPC sensitivity.

The Light Right-Handed Stau Bulk Region in \mathcal{F} -SU(5)

- The LSP neutralino is Bino dominant.
- ▶ The mass hierarchy in \mathcal{F} -SU(5) is $m_{\tilde{\chi}_1^0} < m_{\tilde{\tau}_1} < m_{\tilde{e}_R} = m_{\tilde{\mu}_R}$.
- If the Bino contributes all the DM abundance, the ratio $\mathcal{R}_{\tilde{\tau}_1} \gtrsim 10\%$ implies $m_{\tilde{\chi}_1^0} \leq 103.0$ GeV.
- ▶ The upper bounds on $\tilde{\tau}_1$ and \tilde{e}_R are around 115 GeV and 150 GeV, respectively.

The Light Right-Handed Stau Bulk Region in \mathcal{F} -SU(5)

- ► The entire viable parameter space can be probed by the the 1000-day LUX-ZEPLIN experiment within the next a few years.
- ▶ The proton lifetime via dimension-six proton decay is around $3-4\times10^{34}$ years, so it is within reach of the future Hyper-Kamiokande experiment.
- ► The entire viable parameter space can be probed by the Future Circular Collider (FCC-ee) at CERN, Circular Electron Positron Collider (CEPC)
- ▶ The pure supersymmetry contribution to the muon anomalous magnetic moment Δa_{μ} is small, around 5×10^{-11} , which is consistent with the BMW results. Δa_{μ} can be explained via vectot-like particles if it is needed.

M_5	3996	2591
$ m M_{1X}$	473	268
M_0	23.15	21.49
A_0	0	0
$ an\!eta$	3.04	2.53
M_V	9063	4603
$ m m_h$	125.43	123.06
$m_{ m A}$	7325	5395
$\mathbf{m}_{\widetilde{X}_1^0}$	161.3	92.3
$\mathbf{m}_{ ilde{ au}_1}$	169.6	103.4
$ m m_{ ilde{e}_{B}}$	216.1	130.1
$m_{\tilde{t}_1}$	4273	2747
$ m m_{ ilde{g}}$	4986	3259
$ m m_{ ilde{u}_R}$	6798	4606
$BR(B_S^0 \to \mu^+ \mu^-) \times 10^{-9}$	3.03	3.05
$BR(b \to s\gamma) \times 10^{-4}$	3.61	3.61
$\sigma_{\rm SI} \times 10^{-12} {\rm pb}$	6.28	17.10
$ au_{ m p} imes 10^{34} { m yrs}$	5.01	3.95
$\mathcal{R}_{ ilde{ au}_1}$	5%	12%
$\Omega_{ ilde{\chi}} \mathrm{h}^2$	0.1256	0.118
$\Omega_{\tilde{\chi}} h^2$ (No co-annihilation)	0.386	0.147
co-annihilation rate	> 50%	$\sim 20\%$

 $\label{eq:Figure:Two-benchmark} \textbf{Figure:} \ \, \textbf{Two-benchmark points for Generalized No-Scale} \, \, \mathcal{F}\text{-}\textit{SU}(5). \, \, \textbf{All masses are in GeV}..$

The pMSSM

The methodology just discussed is extended to include the much less constrained generic pMSSM. The pMSSM contains 22 free parameters, and we input M_A and μ in lieu of $m_{H_u}^2$ and $m_{H_d}^2$. The scanning ranges of the pMSSM parameters are as follows:

$$\begin{array}{lll} 20 \; \mathrm{GeV} \leq M_1 \leq 1000 \; \mathrm{GeV} & 2 \leq tan\beta \leq 65 \\ 1000 \; \mathrm{GeV} \leq M_2 \leq 5000 \; \mathrm{GeV} & 1000 \; \mathrm{GeV} \leq M_A, \mu \leq 6000 \; \mathrm{GeV} \\ 1200 \; \mathrm{GeV} \leq M_3 \leq 5000 \; \mathrm{GeV} & M_1 \leq m_{\tilde{e}_R}, m_{\tilde{\tau}_R} \leq 2M_1 \\ 2500 \; \mathrm{GeV} \leq m_{\tilde{q}}, m_{\tilde{Q}}, m_{\tilde{u}_R}, m_{\tilde{t}_R}, m_{\tilde{d}_R}, m_{\tilde{b}_R} \leq 5000 \; \mathrm{GeV} \\ 700 \; \mathrm{GeV} \leq m_{\tilde{l}} \leq 2000 \; \mathrm{GeV} & 1200 \; \mathrm{GeV} \leq m_{\tilde{L}} \leq 5000 \; \mathrm{GeV} \\ -5000 \; \mathrm{GeV} \leq A_u, A_d, A_e, A_t, A_b, A_\tau \leq 5000 \; \mathrm{GeV} \end{array}$$

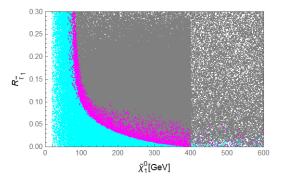


Figure: Bulk region in pMSSM. Cyan, magenta, gray points correspond to under-saturated, saturated, over-saturated DM relic density.

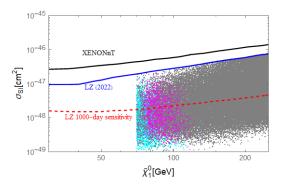


Figure: The pMSSM bulk region LSPs plot in reference to spin-independent DM-nuclei cross sections from XENONnT and LUX-ZEPLIN. Cyan, magenta, gray points correspond to under-saturated, saturated, over-saturated DM relic density with $\mathcal{R}_{\tilde{\tau}_1} \gtrsim 10\%$. The LUX-ZEPLIN 1000-day should fully probe about 50% of the pMSSM bulk.

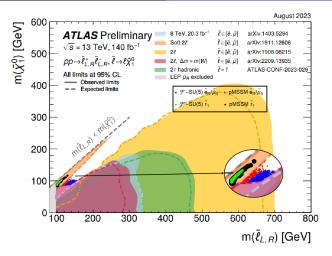


Figure: Generalized No-Scale *F-SU*(5) and pMSSM bulk regions superimposed over the August 2023 ATLAS Summary Plot [?] of SUSY searches for electroweak production of sleptons.

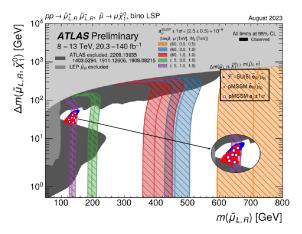


Figure: Generalized No-Scale $\mathcal{F}\text{-}SU(5)$ and pMSSM bulk regions superimposed over the August 2023 ATLAS Summary Plot of SUSY searches for electroweak production of smuons, plot here in terms of $\Delta m = (\tilde{\mu}_{L,R}, \tilde{\chi}_1^0)$ for a Bino LSP, emphasizing consistency of the bulk with recent muon anomalous magnetic moment measurements . The inset is a zoom of the bulk.

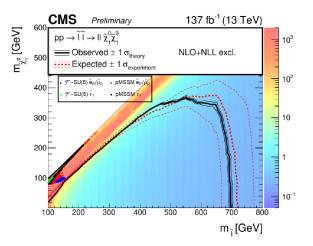


Figure: Generalized No-Scale \mathcal{F} -SU(5) and pMSSM bulk regions consistent with the CMS SUSY searches for the sleptons.

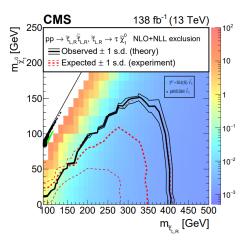


Figure: Generalized No-Scale \mathcal{F} -SU(5) and pMSSM bulk regions consistent with the CMS SUSY searches for the light stau.

The Light Right-Handed Stau Bulk Region in the pMSSM

- ▶ All pMSSM points with an \tilde{e}_R NLSP are excluded by the ATLAS soft lepton SUSY search.
- ► Therefore, like Generalized No-Scale \mathcal{F} -SU(5), the only viable pMSSM region in the bulk is for the case $m_{\tilde{\chi}_1^0} < m_{\tilde{\tau}_1} < m_{\tilde{e}_R} = m_{\tilde{\mu}_R}$.
- Numerical findings disclose the ratio $\mathcal{R}_{ ilde{ au}_1}\gtrsim 10\%$ implies $m_{ ilde{\chi}_1^0}\leq 117.7$ GeV. The upper bound on the light stau mass is about 129.3 GeV.
- ► The bulk alone can explain recent muon anomalous magnetic moment measurements.

Outline

Introduction

The Super-Natural and Effectively Super-Natural SUSY

SUSY Dark Matter

The Generized No-Scale \mathcal{F} -SU(5)

Conclusion

Summary

- We propose Generalized No-Scale Supergravity, the simplest scenario for Effective Super-Natural Supersymmetry, which solve the supersymmetry electroweak fine-tuning problem naturally.
- ▶ A light right-handed slepton bulk region is realized in the Generalized No-Scale \mathcal{F} -SU(5) and the pMSSM.
- ► The bulk region may be beyond the LHC reach, though can be probed at the 1000-day LUX-ZEPLIN, Future Circular Collider (FCC-ee) at CERN, Circular Electron Positron Collider (CEPC), and Hyper-Kamiokande experiments.

Thank You Very Much for Your Attention!