

Spin-Polarized Proton-Boron (p-11B) Fusion: Pathways to Clean Energy

LI Zhi

- ¹ Hebei Key Laboratory of Compact Fusion, Langfang, China
- ² ENN Science and Technology Development Co., Ltd., Langfang, China
- ³ Shandong University, Qingdao, China

*Email: lizhiz@enn.cn

Outline

- Fusion approaches, fuel options, and critical conditions
- Ideal ignition conditions and reaction rate enhancement for p-11B fusion
- Polarization research advances toward p-¹¹B fusion energy applications

Zoo of Fusion Devices

Fusion Reactions for All Candidate Fuels

H. Rider. LLNL High Energy Density Science Seminar

Criteria for fusion fuel viability:

- Reaction threshold
- 2. Reaction cross-section
- 3. Energy released

D, T, ³He:

D + T
$$\rightarrow n + {}^{4}\text{He} + 17.58 \text{ MeV}$$

D + ${}^{3}\text{He} \rightarrow p + {}^{4}\text{He} + 18.34 \text{ MeV}$
D + D $\rightarrow n + {}^{3}\text{He} + 3.27 \text{ MeV} (50\%)$
 $\rightarrow p + {}^{3}\text{He} + 4.03 \text{ MeV} (50\%)$

✓ H,
$${}^{11}B$$
:

$${\rm H} + {}^{11}{\rm B} \rightarrow 3 {}^{4}{\rm He} + 8.68 {\rm \ MeV}$$

Advanced fusion fuels

A Visionary Goal: Commercially Viable Fusion Power

ENN's Roadmap for p-11B Fusion Power Based on the Spherical Torus (ST)

Commercial demo 2035-

p-¹¹B Burn (EHL-3A&3B)

2027-

- Deliver commercially viable fusion energy at competitive cost
- Achieve p-11B plasma ignition and demonstrate net electricity generation
- Phys, engineering, tech. scale-up
- Sustained energy gain (Q>3)
- Validate all critical aspects of hydrogen-boron fusion
- > Experimental verification of high-temperature plasma technologies
- Feasibility assessment of boosted p-11B fusion reaction rates

EXL-50U 2022-

p-11B Reaction (EHL-2)

2023-

- Develop key technologies for ST p-B fusion
- Enhance plasma performance parameters
- Achieve boron fueling and robust operation control

EXL-50 2018-2023

- Established the basis of ST p-B fusion
 - > Initiation, ramp-up, sustainment
 - ST device design, assembly, and operation

ENN's Roadmap for p-11B Fusion Power Based on the Spherical Torus (ST)

M. S. Liu, H. S. Xie, Y. M. Wang, et al., ENN's Roadmap for Proton-Boron Fusion Based on Spherical Torus, Phys. Plasmas 31, 062507 (2024)

Commercial demo 2035-

p-¹¹B Burn (EHL-3A&3B) **2027**-

- Deliver commercially viable fusion energy at competitive cost
- Achieve p-¹¹B plasma ignition and demonstrate net electricity generation

 $\beta_{T} = 1 - 2\%$

p-11B fusion

- Phys, engineering, tech. scale-up
- Sustained energy gain (Q>3)
- Validate all critical aspects of hydrogen-boron fusion
- > Experimental verification of high-temperature plasma technologies
- ➤ Feasibility assessment of boosted p-¹¹B fusion reaction rates

EXL-50U 2022-

p-11B Reaction (EHL-2)

2023-

- Enhance plasma performance parameters
- Achieve boron fueling and robust operation control

 $\tau_E^{IPB98\mathbf{y2}} = 0.0562 I_{\rm p}^{0.93} B^{0.15} P^{-0.69} n^{0.41} M^{0.19} R^{1.97} \varepsilon^{0.58} \kappa_\alpha^{0.78}$

 $\tau_{\rm E}^{ST} = 0.066 I_{\rm p}^{0.53} B_{\rm T}^{1.05} P^{-0.58} n^{0.65} R^{2.66} \kappa^{0.78}$

 β_{T} =20-40%

Peng1986

Spherical Torus

ST

EXL-50 2018-2023

Established the basis of ST p-B fusion

- > Initiation, ramp-up, sustainment
- > ST device design, assembly, and operation

Challenge

- Higher required triple product
- Intense Bremsstrahlung

Advantage No neutron, blanket

- Higher β_T , lower B_T , more compact
- t_EST leverages R and B_T, not I_P

More limited space for center post

Theoretical Possibility of p-11B Fusion: Need for Enhanced Reaction Rates

Theoretical Possibility of p-11B Fusion: Need for Enhanced Reaction Rates

Theoretical Possibility of p-11B Fusion: Need for Enhanced Reaction Rates

Polarization Research Advances toward Fusion Energy Applications

International research directions in polarized fusion fuels:

- Reduce T consumption in D-T fusion
- Control neutron emission direction in D-T fusion
- Enhance D-3He/DD fusion performance
- Suppress neutron emission in D-3He fusion

Global spin-polarized nuclear data status:

- D-D: Scarce
- D-³He: Deficient
- p-11B: Virtually nonexistent

Ciullo (SPIN)

Lots of efforts in last 2 years!

Heidbrink (SPIN2023)

Plasma Transport

Extremely groundbreaking and brilliant research initiative!

Polarization Research Advances toward Fusion Energy Applications

International research directions in polarized fusion fuels:

- Reduce T consumption in D-T fusion
- Control neutron emission direction in D-T fusion
- Enhance D-3H
- Suppress neut

Global spin-pola

- D-D: Scarce
- D-3He: Deficie
- p-11B: Virtuall

The PREFE

Numerous advantages, research agendas, and experimental proposals

The use of D-D reactions to diagnose the lifetime of spin polarized fuel

— yet why not p-11B?

Giuseppe Ciul on b A. A. Vasilyev et al T.P. Rakitzis et al. IESL-FORTH & University @ Crete

Ciullo (SPIN)

Extremely groundbreaking and

brilliant research initiative!

Plasma

eidbrink (SPIN2023)

Polarization Research Advances toward p-11B Fusion Energy Applications

Polarized p-11B fusion research

- Remains largely unexplored
- priorities:
 - Differential cross-section measurements of spin-polarized p-¹¹B reactions
 - Development of boron fuel spin-polarization techniques
 - Sustenance of spin-polarized hydrogen-boron plasma

PHYSICAL REVIEW C. VOLUME 62, 025803

The $^{11}\mathrm{B}(\vec{p},\gamma)^{12}\mathrm{C}$ reaction below 100 keV

J. H. Kelley, ^{1,2} R. S. Canon, ^{1,3} S. J. Gaff, ^{1,3} R. M. Prior, ^{1,4} B. J. Rice, ^{1,3} E. C. Schreiber, ^{1,3} M. Spraker, ^{1,4} D. R. Tilley, ^{1,2} E. A. Wulf, ^{1,3} and H. R. Weller^{1,3}

¹Triangle Universities Nuclear Lab, Duke University, Durham, North Carolina 27708
 ²Department of Physics, North Carolina State University, Raleigh, North Carolina 27696
 ³Department of Physics, Duke University, Durham, North Carolina 27708
 ⁴Department of Physics, North Georgia College and State University, Dahlonega, Georgia 30597 (Received 5 April 2000; published 6 July 2000)

The 11 B(\vec{p} , γ) 12 C reaction was studied by measuring the γ rays that were produced when 80–100-keV polarized protons were stopped in a thick 11 B target. Cross sections and vector analyzing powers at 90° were determined as a function of energy for capture to the ground and first excited states of 12 C. These analyzing powers are particularly sensitive to the interference between s- and p-wave contributions, and to the relative phase between direct and resonance amplitudes. The results were used to produce a reliable extrapolation of the astrophysical S factor at 0 keV by means of a direct-capture-plus-resonances model calculation. The value of S(0) that was obtained for 11 B(p, γ_0), 1.8 ± 0.4 keV b, is in agreement with previously determined values, but for 11 B(p, γ_1) the value of S(0) is 3.5 ± 0.6 keV b and is more than twice as large as previously determined

ACS number(s): 25.40.Lw, 21.10.Pe, 24.70.+s, 27. Experimental contribution

p-11B Reaction: A Complex Process

Multi-pathway process with excited intermediates $(^{12}C, ^{8}Be)$

- $p+^{11}B\rightarrow^{12}C^*\rightarrow\alpha_0+^8Be\rightarrow\alpha_0+\alpha_{01}+\alpha_{02}: ^{11}B(p,\alpha_0)\alpha\alpha$
- $p+^{11}B\rightarrow^{12}C^*\rightarrow\alpha_1+^8Be^*\rightarrow\alpha_1+\alpha_{11}+\alpha_{12}:^{11}B(p,\alpha_1)\alpha\alpha$
- $p+^{11}B\rightarrow^{12}C^*\rightarrow 3\alpha: {}^{11}B(p,2\alpha)\alpha$
- $p+^{11}B \rightarrow ^{12}C + \gamma_0$: $^{11}B(p,\gamma_0)^{12}C$
- $p+^{11}B\rightarrow^{12}C+\gamma_1+\gamma^*$ (4.439 MeV): $^{11}B(p,\gamma_1)^{12}C\gamma^*$

Becker1987, Spraker2012

Mazzucconi2023

Munch2020

Key Challenges Demand Theoretical and Experimental Advances

- ❖ Polarization effects on reaction cross-section
 - a) Unpolarized spin $P_{m_1} = 1/2$, $B_{m_2} = 1/4$

$$\sigma_0 = \frac{3}{8}\sigma_1 + \frac{5}{8}\sigma_2$$

$$+\frac{1}{2}$$

$$\overrightarrow{B}$$

$$-\frac{1}{2}$$

b) Spin aligned along the magnetic field

i.
$$P_{+\frac{1}{2}} = B_{+\frac{3}{2}} = 1$$

$$\sigma_{+\frac{1}{2},+\frac{3}{2}} = \sigma_2$$

i.
$$P_{+\frac{1}{2}} = B_{+\frac{3}{2}} = 1$$
 ii. $P_{+\frac{1}{2}} = B_{+\frac{1}{2}} = 1$

$$\sigma_{+\frac{1}{2},+\frac{1}{2}} = \frac{1}{4}\sigma_1 + \frac{3}{4}\sigma_2$$

Compared with the unpolarized scenario

$$rac{\sigma_{+rac{1}{2},+rac{3}{2}}}{\sigma_0}=rac{\sigma_2}{rac{5}{8}\sigma_2}=1.6$$

$$rac{\sigma_{+rac{1}{2},+rac{3}{2}}}{\sigma_0} = rac{\sigma_2}{rac{5}{8}\sigma_2} = \mathbf{1.6}$$
 $rac{\sigma_{+rac{1}{2},+rac{1}{2}}}{\sigma_0} = rac{rac{3}{4}\sigma_2}{rac{5}{8}\sigma_2} = \mathbf{1.2}$

Polarized hydroboration shows ~60% enhancement in total cross-section vs. unpolarized case

Proposes for p-11B polarization studies towards fusion application

Proposes for p-11B fusion reaction experiments

EXL-50U (operational): experiment proposes before 2027

NBI-ICRF synergy-driven energetic protons initiating p-¹¹B fusion

• EHL-2 (next generation): start in 2027

Thermonuclear p-11B fusion platform

Spin-polarization sustainment and polarized reaction experiments? 18

Summary

- proton-Boron Fusion: The Most Promising Commercialization Pathway
- Advantages: Neutron-free, abundant fuel, high safety
- Challenge: High ignition requirements
- Research Directions:
 - Synergy with spherical torus configurations
 - Enhancing hydrogen-boron reaction rates
- ◆ Polarized p-¹¹B fusion research priorities:
 - Differential cross-section measurements of spin-polarized p-¹¹B reactions
 - Development of boron fuel spin-polarization techniques
 - Sustenance of spin-polarized hydrogen-boron plasma
- Experimental exploration on EXL-50U and EHL-2 devices
 - (Polarized) fusion reaction experiments
 - Polarized plasma generation and sustainment

Fusion Fuel of Great Promise and Challenge: Proton-Boron

Fuel options for commercial fusion energy

Fuel	Pros	Cons	Fuel Price (USD/g)	Proven Reserves
1. D-T	Lowest ignition temp (100- 200MK), high energy yield, proven scientific basis	Tritium fuel scarcity, neutron radiation challenges, nuclear waste concerns	Tritium: 30,000	25 kg
2. D-D	Abundant deuterium, no tritium needed, lower neutron yield	Higher ignition temp (400MK), lower energy yield, neutron damage	Deuterium: 4	45 trillion tons
3. D- ³ He	Minimal neutrons, high energy yield, direct conversion	Rare ³ He, higher ignition temp (400MK), side reactions	³He: 13700	³ He scarcity: Extremely rare on Earth, requiring lunar mining or D-D breeding
4. p- ¹¹ B	Abundant boron fuel, direct energy conversion, environmentally safe	Highest ignition temp (>1000MK), low reaction rate, S&T challenges	¹¹ B: 4	1 billion metric tons

Tritium (T), helium-3 (³He), and lithium-6 (⁶Li) are government-controlled materials that are not accessible to private companies in China.