
2025.09.22 **26th** International Symposium on **Spin Physics**

LQCD Determination of Quark Spin in Octet Baryons and SU(3)-Flavor Symmetry

Speaker: Zhi-Cheng Hu (胡志成)

Institute of Modern Physics, CAS

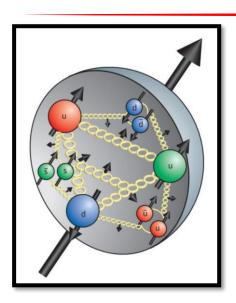
huzhicheng@impcas.ac.cn

Collaborators: Ji-Hao Wang, Liu-Ming Liu, Peng Sun, and Yi-Bo Yang

♦ Chapter 1: Introduction

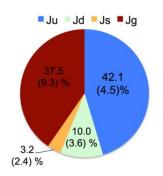
♦ Chapter 2: Theoretical Framework

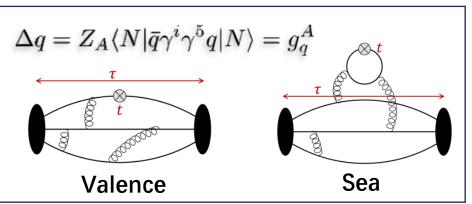
♦ Chapter 3: Numerical result of Quark Spin and Discussion


♦ Chapter 1: Introduction

♦ Chapter 2: Theoretical Framework

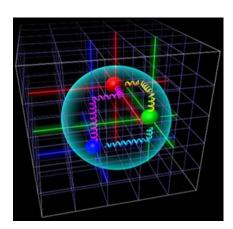
♦ Chapter 3: Numerical result of Quark Spin and Discussion


1. Introduction: Intrinsic Quark Spin

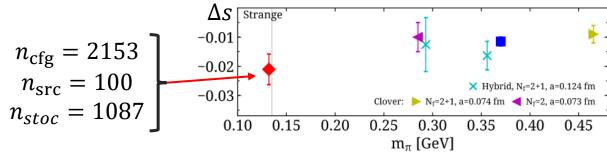


Ji's sum rule:
$$\frac{1}{2} = \sum_{q=q,d,s,\dots} (\frac{1}{2}\Delta q + L_q) + J_g$$
 X.D. Ji, PRL **78**, 610(1997)

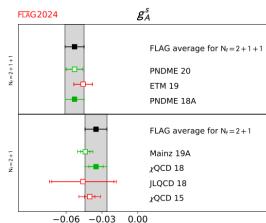
□ Total intrinsic quark spin contribute ~30-40% to nucleon;



Nature Rev.Phys. **3**, 27-38(2021)

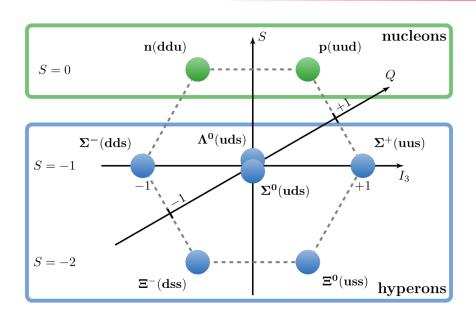


✓ Lattice QCD provides a first-principle, non-perturbative description of the strong interaction.


K. G. Wilson, P.R.D. 10, 8 (1974);

□ LQCD faces large challenge on calculate sea quark contribution(Quark disconnected insertion);

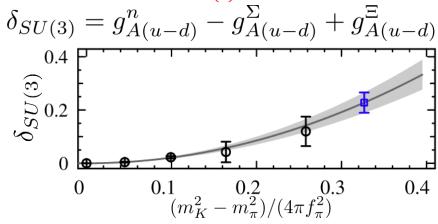
C. Alexandrou et al., PRL **119**, 142002 (2017)



PNDME, PRD **98**, 094512 (2018)

χQCD, PRD **98**, 074505 (2018) Mainz, arXiv 1911.01177 (2019)

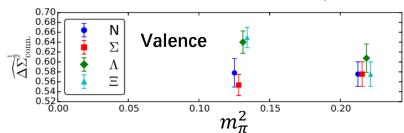
1. Introduction: Flavour-singlet Quark Spin for Baryon Octet and SU(3) symmetry



 $m_{\underline{u}}^{\overline{\rm MS}(2{
m GeV})} \simeq 2.1{
m MeV}$ $m_{\underline{d}}^{\overline{
m MS}(2{
m GeV})} \simeq 4.7{
m MeV}$ $m_{s}^{\overline{
m MS}(2{
m GeV})} \simeq 93{
m MeV}$

FLAG(2024), arXiv:2411.04268

There is moderate SU(3) symmetry breaking effects for the iso-vector axial charges, $\delta_{SU(3)}/g_A^n \sim 9\%$;



H.W. Lin et al, PRD **79,** 034507 (2009) A. Savanur, PRD **102**, 014501 (2020) RQCD, PRD **108**, 034512 (2023)

■ How does SU(3) flavour symmetry and breaking affect

Hyperons Spin Structure?

A. J. Chambers, P.R.D 90, 014510 (2014)

✓ In this study we use a novel *Blending method* to study "Quark Spin in Octet Baryons" (including sea quark contribution) at 3 ensembles (include 2 pion mass and 2 lattice spacing).

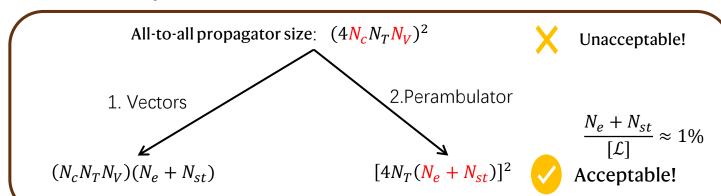
♦ Chapter 1: Introduction

♦ Chapter 2: Theoretical Framework

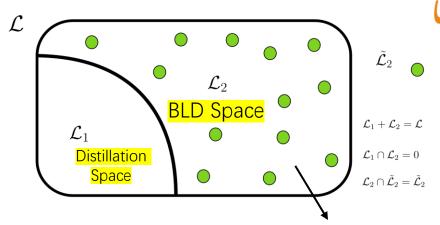
♦ Chapter 3: Numerical result of Quark Spin and Discussion

2: Theoretical Framework: Blending Method

Distillation can significantly improve the signal-tonoise ratio and suppress excited-state contamination;


$$-\nabla^2|\phi\rangle=\lambda|\phi\rangle,$$

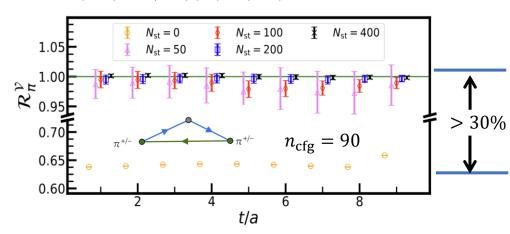
$$L=\{|\lambda\rangle;-\nabla^2|\phi\rangle=\lambda|\phi\rangle\}. \qquad \textit{PRD. 80, 054506 (2009)}$$


- \square Distillation space \mathcal{L}_1 is not complete, resulting in bias of local current ME;
- *Blending* method(BLD) can provide an unbiased estimation of identity matrix, based on samples in \mathcal{L}_2 ;

Z.C. Hu et al., arXiv: 2505.01719(2025)

✓ <u>All-to-All fermion Propagator could be stored and reused.</u>

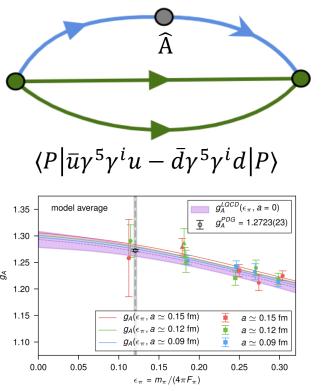
$$S_{ij}(t_1, t_2) = \int d^3x d^3y \langle \phi_i(\vec{x}, t_1) | S(\vec{x}, t_1; \vec{y}, t_2) | \phi_j(\vec{y}, t_2) \rangle,$$



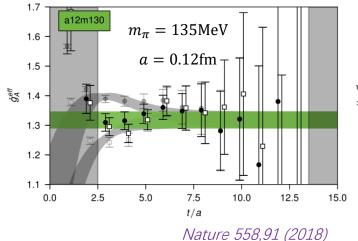
Samples by Noise vector

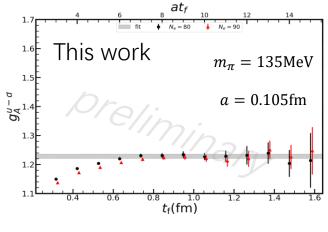
Conserved Current Test:

$$\langle H|V^c|H\rangle/\langle H|H\rangle = 1$$



$$\sqrt{\pi^+|V^c|\pi^+} = 1.0002(29) \text{ with } N_{\rm st} = 400 \text{ ,}$$
 $m_\pi \approx 290 \text{MeV;}$

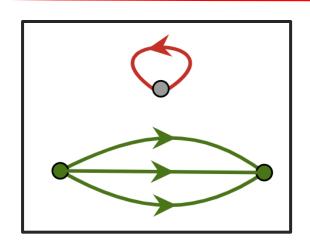

2: Theoretical Framework: Blending Method

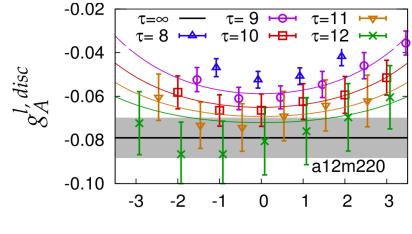


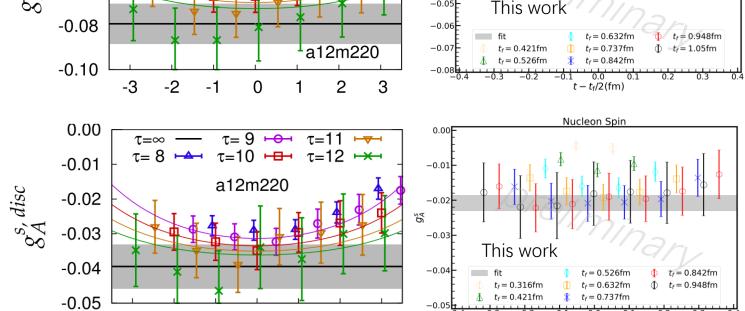
- ◆ Low-lying space of Laplace (Distillation) can get high precision nucleon external state without momentum;
- \checkmark We observe substantially improved results at the physical point $(m_{\pi} = 135 \text{MeV})$;

	Ensemble $n_{\rm cfg}$	g_A^{u-d}	$\delta x/ x $
CLQCD(This work)	C48P14 46	1.221(07)	0.57%
CalLat	a15m130 1000	1.270(72)	5.66%
[Nature 558, 91(2018)]	a12m130 1000	1.292(30)	2.32%
RQCD [PRD 108, 034512 (2023)]	D452 1000	1.17(24)	20.5%

Severe model dependent !!!


✓ It is expected to achieve experimental-level precision of 0.1% with an internationally comparable level of statistics (e.g., 1000 configurations);


2: Theoretical Framework: Blending Method



Nucleon Spin

 $t - t_f/2 (fm)$

3

2

-0.01

-0.05

- A better ground-state convergence!
- The cost could be control very well.
- Data of fermion Propagator could be stored and reused.

PNDME, P.R.D 98, 094512 (2018)

 $t - \tau/2$

	Ensemble	m_{π}	$L^3 \times T$	$n_{\rm cfg}$	$n_{ m inv}$	$g_A^{u,{ m DI}}$	$g_A^{s,{ m DI}}$
PNDME Collaboration	a12m220	$228 \mathrm{MeV}$	32x64	958	11000	-0.075(9)	-0.037(6)
CLQCD(This work)	C32P23	$227 \mathrm{MeV}$	32x64	80	3200*	-0.035(7)	-0.021(2)


-3

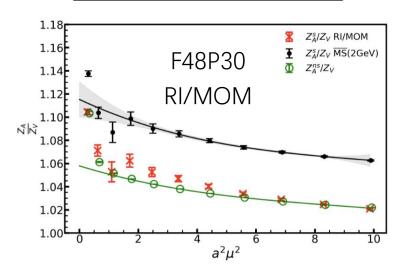
2: Theoretical Framework: Lattice Setup

> 2+1 flavor tadpole-improved Clover Fermion with Symanzik gauge action;

	a(fm)	$m_{\pi}(\mathrm{MeV})$	$L_x \times L_t$	$m_{\pi}L$	$n_{ m cfg}$
C32P29	0.105	292	32x64	5.0	200
C32P23	0.105	227	32x64	3.9	80
F48P30	0.077	303	48x96	5.7	40

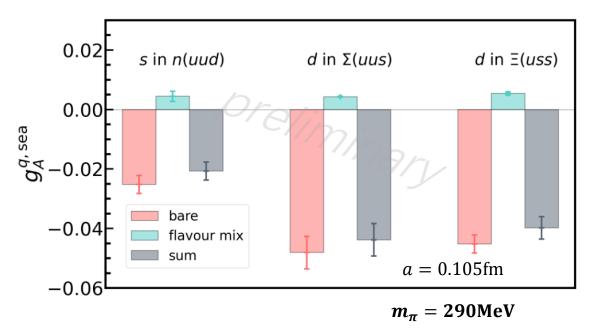
CLQCD, PRD **109**, 054507 (2024) CLQCD, PRD **111**, 054504 (2025)

♦ Chapter 1: Introduction

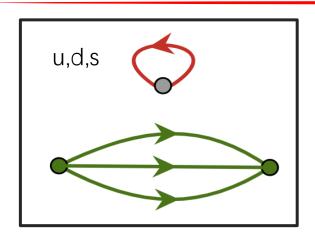

♦ Chapter 2: Theoretical Framework

◆Chapter 3: Numerical result of Quark Spin and Discussion

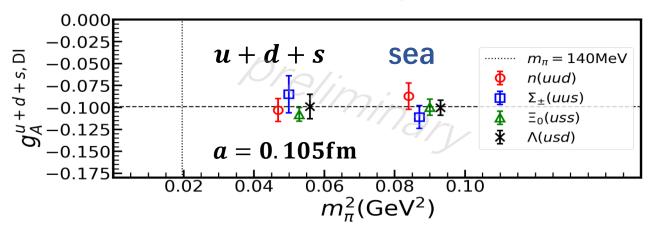
3.1 Renormalization and Flavour mixing



◆ Flavour Non-singlet and Singlet renormalized constant;

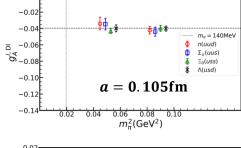

$$g_A^{q,\text{bare}} \equiv \langle N | \bar{q} \gamma_i \gamma_5 q | N \rangle;$$

A. J. Chambers et al. , PRD 92, 114517 (2015)

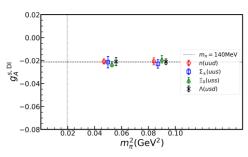


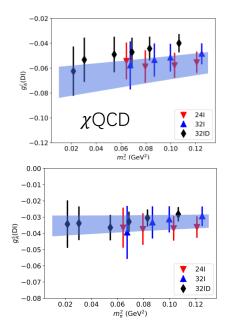
- igspace Flavour mixing will lead to 1σ shift at current precision globally;

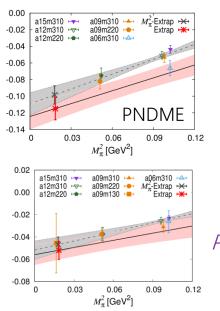
3.2 Chiral behavior of Sea Quark Contribution to Spin



✓ The contribution of sea quarks is basically consistent in all octet baryons;




 \triangleright We didn't see apparent m_{π} dependence at $m_{\pi} \approx 220 \text{MeV}$ and $m_{\pi} \approx 300 \text{MeV}$ for sea quark contribution;

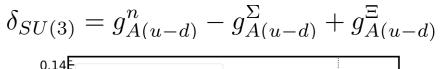


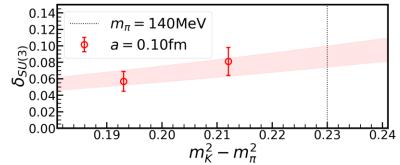
strange:

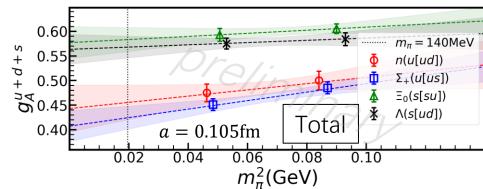
■ CLQCD result is more closed χ QCD collaboration which is support for weaker m_{π} dependence.

PNDME, PRD **98**, 094512 (2018) χQCD, PRD **98**, 074505 (2018)

P13

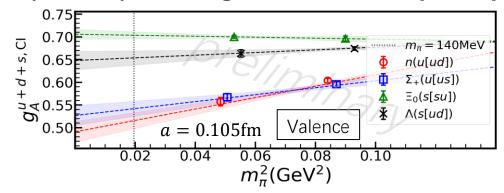

3.3 The total singlet quark spin and SU(3)-flavour symmetry

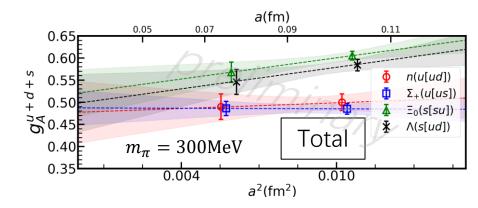



$$n = \frac{\mathbf{u}}{\mathbf{u}} (\mathbf{u}^T C \gamma^5 d)$$
$$\Sigma^+ = \frac{\mathbf{u}}{\mathbf{u}} (\mathbf{u}^T C \gamma^5 s)$$

strange dominant

$$\begin{cases} \Xi_0 = \mathbf{s}(s^T C \gamma^5 u) \\ \Lambda_0 = 2\mathbf{s}[u^T d] + d[u^T s] - u[d^T s] \end{cases}$$




◆ SU(3) symmetry keep well inside di-quark operator;

$$n(u[ud]) \stackrel{\mathrm{s}}{\underset{\mathrm{d}}{\rightleftharpoons}} \Sigma(u[us]); \; \Xi(s[su]) \stackrel{\mathrm{d}}{\underset{\mathrm{s}}{\rightleftharpoons}} \Lambda(s[ud])$$

◆ Connected Diagram has larger influence for SU(3) symmetry breaking on 20% level on quark spin.

◆ After continuum extrapolation, there is a tendency for the SU(3) symmetry to partially recover.

♦ Chapter 1: Introduction

♦ Chapter 2: Theoretical Framework

♦ Chapter 3: Numerical result of Quark Spin and Discussion

4. Conclusion and Outlook

Conclusion

- 1) The sea quark contribution is consistent in Octet baryons ranging $m_{\pi} \in [220,300]$ MeV;
- 2) SU(3)-flavour symmetry breaking has ~20% influence in valence quark helicity;
- 3) The symmetry is better preserved within specific diquark structures, as seen in the pairs like, (n, Σ) (Λ, Ξ) ;
- 4) There is a tendency for the SU(3) symmetry to partially recover after continuum extrapolation.

Outlook

- 1) The chiral behavior of sea quark helicity should be checked carefully;
- 2) More systematical computation in different lattice spacing such as a = 0.077 fm and a = 0.052 fm will be done in the near future;
- 3) Calculation directly at physical point is also in progress.

Thanks you!