

Development of Electron Beam Study of the Nucleon Axial Vector Form Factor at JLab

Todd Averett (William & Mary), Jim Napolitano (Temple)

Bogdan Wojtsekhowski (JLab), Weizhi Xiong (Shandong Univ.)

Sep. 22-26 2025

26th International Symposium on Spin Physics

Outline

- Physics motivation
- Experimental concept and design
- Current status and projections
- Summary

The idea has been around a while!

- •LOI to PAC 1 (JN) Not a typo!
- •LOI to PAC 25 (A Deur)
- •LOI to PAC 52 (JN and BBW)

Physics Motivation

Charged Weak Current Analog of the Electromagnetic FF's

Vector Interaction

$$\langle p+q | J_V^{\mu} | p \rangle = \bar{u}(p+q) \left| F_1(q^2) \gamma^{\mu} + \frac{\kappa}{2m} F_2(q^2) i \sigma^{\mu\nu} q_{\nu} \right| u(p)$$

You are very familiar with these form factors.

Axial-Vector Interaction

$$\langle p + q | J_A^{\mu} | p \rangle = \bar{u}(p+q) \left[F_A(q^2) \gamma^{\mu} \gamma^5 + F_{PS}(q^2) q^{\mu} \gamma^5 \right] u(p)$$

Well measured at zero momentum transfer (beta decay).

Our goal is to measure $F_A(q^2)$ at finite momentum transfer.

Physics Motivation

- Similar to EMFFs, AVFF is also an essential QCD observable for nucleons
- An important test ground for many theoretical calculations (LQCD, Dyson-Schwinger method...)

A. Meyer, A. Walker-Loud, C. Wilkinson *ARNPS*. 72 (2022) 205-232

Physics Motivation

(Besides being another fundamental QCD observable!)

New constraints on Generalized Parton Distributions

(Peter Kroll)
$$F_A^{(3)}(t) = \int_0^1 \left[\widetilde{H}_v^u(x,\xi,t) - \widetilde{H}_v^d(x,\xi,t)\right] dx \quad \text{Valence quarks} \\ + 2 \int_0^1 \left[\widetilde{H}^{\bar{u}}(x,\xi,t) - \widetilde{H}^{\bar{d}}(x,\xi,t)\right] dx \quad \text{Sea quarks (small)}$$

• Important input for DUNE and other high energy neutrino experiments

(Aaron Meyer)

Important constraints on LQCD calculations needed to untangle neutrino oscillations in DUNE.

(Even a 25% measurement helps a lot.)

How It Was Measured Before

- The natural way to measure $F_A(Q^2)$ is neutrino scattering
 - $\triangleright \nu A$ scattering
 - $\triangleright \nu D$ bubble chamber experiments
 - > vp scattering using plastic scintillator
- Limitations:
 - 1. Board range neutrino energy
 - 2. Usually not a free proton (nuclear effect)
 - 3. Large systematics

How It Was Measured Before

- Another model dependent method is pion eletroproduction near threshold
 - Need to assume partially conserved Axial current model (PCAC)
- Results with large uncertainties, and disagree at high Q²

Experimental Concept

- Is it possible to measure this using electron beam?
 - free proton target, no nuclear effect
 - no model dependency
 - high precision lepton beam, compared to neutirno beam

- No hope in detecting the neutrino obviously, but we can still capture the neutron
- Reaction kinematic close to elastic ep kinematic, that means at a given scattering angle:
 - Neutron kinetic energy is fixed
 - Neutron from this reaction has the largest kinetic energy
- For neutrons of interested, recon ebeam should equal beam energy
- Nice and easy!

$$E_{beam}^{rec} = \frac{E_n - (M_p^2 + M_n^2)/2M_p}{1 + (P_n \cos \theta_n - E_n)/M_p},$$

Experimental Concept

- In reality this is quite difficult...
 - Charge current cross section: $\frac{d\sigma}{d\Omega_{\nu,lab}}|_{e+p\to\nu+n}=1.35\times 10^{-39}~{\rm cm}^2/{\rm sr}$
- Meanwhile, background rates from other channels:
 - Elastic ep cross section: $\frac{d\sigma}{d\Omega_{lab}}|_{e+p\to e+p}=1.4\times 10^{-32}~{\rm cm}^2/{\rm sr}$
 - Pion electro and photo-production rate $(ep \rightarrow e\pi^+ n, \gamma p \rightarrow \pi^+ n, ep \rightarrow e\pi^+ \pi^0 n...)$, should be even higher than elastic ep
 - What about aluminum cell window, quasi-elastic en, pion production in Al?

Experimental Concept

- 1. Need to measure the neutron angle and kinetic energy with high precision!
 - ➤ Neutron time-of-flight, can reach about 1% resolution for T with 100ps resolution, possible! (BAND detector in Hall B JLab)
 - ➤ Hadronic calorimeter, resolution ~50%/sqrt(E), used for suppress low E bg.
- 2. Need large acc. veto detector (0.4 sr) to reject backgrounds (pion production, elastic ep...)
 - > p and e are co-planer, with constrained kinematics
 - \triangleright for neutrons from pion production, *n* and π are also co-planer, with constrained kinematics
- 3. Need carefully designed shielding to block Al windows
- 4. Only left handed e can produce signal!

The primary challenge is to reduce the backgrounds from electromagnetic processes (10⁷ larger than our signal) so that background subtraction yields a statistically useful signal.

Experimental Setup

Jefferson Lab Hall C

- E=2.2 GeV, 120μA, P=85%
- 10cm LH2 target (pure; low D2)
- $\theta_n = 48^{\circ} \text{ so } Q^2 = 1 \text{GeV}^2$
- $T_n = 525 \text{ MeV}, \text{ v/c}=0.77$
- 15m to TOF, 65 ns, $\Delta\Omega$ =75 msr
- Expect to get $\sigma_{TOF}=100$ ps

•
$$\theta_{\nu} = 30^{\circ} = \theta_{e}$$

•
$$E_e = 1.67 \text{ GeV}$$

Experimental Setup

3D view

Neutron arm:

- Center at 48°
- Sweeper magnet
- > 1540 6cm x 6cm x 200cm long scintillator bars for nTof
- ➤ Large NCal 2.5m downstream of nTof

Veto arm

- Center at 30°
- Used as veto detector to reject elastic and pion production events
- Calorimeter HCal
- GEM trackers (only for calibration)

LH2 target:

- > 25cm long LH2 with 10cm active
- > Al cell, windows 150um each
- > W shielding, block cell windows

Using NCal + TOF to Determine Beam Bunch

- JLab beam has bunch interval, 2ns, 4ns, 8ns, 16ns...
- How do we know what bunch the neutron is coming from?
 - \rightarrow n we want to detect arrives at ~65ns (T = 529MeV)
 - > at 8ns later, the neutron still has ~350MeV, 16ns later still ~250MeV...
 - ~60% energy resolution of calorimetry cannot reject events from out-of-time bunches!
- > Solution: move NCal 2.5m downstream, and measure beta using TOF and NCal
- ➤ Preliminary estimation: efficiency ~25%

Simulation Comparison between G4 And FLUKA

- Geant4 produce about ~2 times more neutron background from LH2 than FLUKA
- 10 times more neutrons from aluminum
- Currently in progress of resolving this discrepancy
- Taking the G4 rate for conservative estimate for now

Simulation

50 days of data taking, 10 cm LH2, 120 μA

Simulation

- 1. Signal (gaussian shape)
- 2. Background (gaussian tail)
- 3. Background (linear)

50 days of data taking, 120 μA

(N⁻ - N⁺) bin-by-bin analysis

Signal = 19k + - 6.5k events

Simulation

- Assume 50 PAC days of data taking, with 10cm active LH2 target and 120 uA current
- Current conservative estimate gives overall 35% uncertainty
- Time resolution < 50ps possible quite possible (detector development at USTC, CERN, INFN, JLAB, EIC...), gives 25% accuracy

Current conservative estimate (Geant4 rate + 100ps time reso.)

Geant4 rate + 50ps time reso., 25% accuracy

Event type	Rate Hz, all cuts 310 MeV range	Total events	Asymmetry events	Accuracy, contr. frac
p(e,n)v	0.0044	19k	1.0	
$\Lambda + \Sigma$	0.23	1M	~0.03	0.06
$\pi^+ + n$	34.5	150M	< 10 ⁻⁶	< 0.01
Detector syst.	efficiency, $\Delta\Omega$,			0.05
Statistics				0.34
Stat. + syst.				0.35

$$F_A/F_{A,Dipole} = 1 \pm 0.34(stat) \pm 0.08(syst)$$
 at $Q^2 = 1 (\text{GeV/c})^2$

Summary

- A "new" method to measure axial form factor using polarized electron beam
 - > Free proton target, no nuclear effect
 - > no model dependency
 - high precision lepton beam, compared to neutirno beam
- Projected result: 34% statistical uncertainty + 5% systematic uncertainty, with 50 PAC days running at 120uA @ 2.2 GeV at JLab
- Still working on various potential improvements (and problems)
 - Uncertainty largely dominated by pion production background (single and multi pions)
 - Geant4 gives significantly more neutrons than FLUKA, need beam test for background measurement
 - Optimization of collimators, target cell, TOF, and neutron efficiency
- Further improvement quite possible!
- Essential to have short test run for neutron bg rate and time reso.
- Any suggestion and ideas are very welcomed, thank you for your attention!

Backup

Particle rate on TOF

- Sweeper magnet
 - 1Tm, 2m tall aperture
 - Sweep away charged particles
- Simulation shooting 2.2GeV electron beam at target
- Particle flux measured in front of TOF and NCal
- Significant reduction of particle rate at high energy region with magnet turned on

