

Λ hyperon local polarization in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

arXiv:2502.07898

Chenyan Li (李辰艳), for the CMS collaboration Shandong University (山东大学)

Hyperon polarization along beam direction

The collective flow generates non-zero vorticity along the beam (z) direction Non-zero vorticity results in particle polarization via spin-orbit coupling

Hyperon polarization along beam direction

Hyperon weak decay is a simple and direct probe of polarization Quadrupole structure of polarization observed

Hyperon polarization along beam direction in AA collisions

Significant P_z signal w.r.t 2nd-order and 3rd-order event plane observed in AA collisions Indication of correlation between flow and polarization

What about in small systems?

Similar collective feature in high-multiplicity pp and pPb collisions Is a QGP droplet created in smaller collision systems?

Can Hyperon polarization along beam direction be observed?

Hyperon polarization extraction

2025/09/23 Spin 2025

Hyperon polarization extraction

$$P_{z,s2} = \frac{\langle \cos \theta^* \sin(2\phi - 2\Psi_2) \rangle^{\sin g}}{\langle \cos^2 \theta^* \rangle \, \alpha_H \, Res(\Psi_2)}$$
 (\$\alpha_H: \alpha_\Lambda = 0.750 \pm 0.009, \$\alpha_{\bar{\Lambda}} = -0.758 \pm 0.010 \ Nature Phys. 15 (2019) 631–634\$)

2025/09/23

P_{z,s2} in pPb collisions

Significant positive $P_{z,s2}$ signal observed for the entire multiplicity range $P_{z,s2}$ values for Λ , $\overline{\Lambda}$ are consistent

P_{z,s2} decrease as function of multiplicity

P_{z,s2} in pPb collisions

Significant positive $P_{z,s2}$ signal observed for the entire multiplicity range $P_{z,s2}$ values for Λ , $\overline{\Lambda}$ are consistent

 $P_{z,s2}$ decrease as function of multiplicity, increase as function of p_T

Cross check $-K_s^0$

 $P_{z,s2}$ values for K_s^0 (spin-0 particle) are consistent with 0 as expected No strange detector effects

Is it from medium expansion?

Why is it increasing monotonically towards 0 multiplicity?

Is it from medium expansion?

Why is it increasing monotonically towards 0 multiplicity?

Not consistent with the trend of v₂

Is it from medium expansion?

Hydro calculation: *Phys.Rev.C* 111 (2025) 4, 044901

Why is it increasing monotonically towards 0 multiplicity?

Not consistent with the trend of v₂ Hydro calculation is not consistent with data

Is it from spin physics?

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis

Is it from spin physics?

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis Projection into x-y plane introduce a P_z wrt thrust axis (n)

Is it from spin physics?

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis Projection into x-y plane introduce a P_z wrt thrust axis (n) Thrust axis coincide with 2nd order event plane at low multiplicity Opposite direction than our signal; but could have a z_{Λ} dependence Diluted towards high multiplicity

Summary

- First measurement of hyperon polarization along the beam direction in pPb collisions
- Significant positive $P_{z,s2}$ observed for the entire multiplicity range from 3 to 250
- $P_{z,s2}$ decrease as function of multiplicity, which is not consistent with hydro expectation
- $P_{z,s2}$ increase as function of p_T
- The results might indicate complex vorticity structures in pPb collisions
- It remains to be seen how different polarization mechanisms contribute to the observed signal

Backup

The number of events:

$N_{trk}^{offline}$	3-60	60-120	120-150	150-185	185-250
Events	270M	426M	58M	56M	280M

A reconstruction in pPb collisions

8.16 TeV pPb data collected by CMS experiment with $L_{int} = 186 \text{ nb}^{-1}$

Clear signal for Λ

Multiplicity interval ($N_{\rm trk}^{\rm offline}$)	$\langle N_{ m trk}^{ m offline} angle$	$\langle N_{ m trk}^{ m corrected} angle$
[3,60)	40.0	48.5 ± 1.9
[60, 120)	86.7	105.3 ± 4.2
[120, 150)	132.7	161.2 ± 6.4
[150, 185)	163.6	198.7 ± 7.9
[185, 250)	203.3	246.9 ± 9.9

 $\langle N_{\rm trk}^{\rm offline} \rangle$: average track multiplicity ($p_T > 0.4~GeV$, $|\eta| < 2.4$), requiring at least one reconstructed Λ ($\overline{\Lambda}$) candidate in event.

 $\langle N_{trk}^{corrected} \rangle : \langle N_{trk}^{offline} \rangle$ after efficiency correction.

Cross check – HF event plane

Consistent results w.r.t to forward rapidity event plane
No short range/self correlation

Multiplicity dependence in pPb and AA

Why is it increasing monotonically towards 0 multiplicity?

Not consistent with the trend of v₂

Multiplicity dependence: similar trend as in AA collisions

P_T dependence in pPb and PbPb

More details of hydro calculations in pPb

C. Yi, X.-Y. Wu, J. Zhu, S. Pu and G.-Y. Qin, *Phys.Rev.C* 111 (2025) 4, 044901

Hydro calculations in different collision systems

Is it from "ring polarization induced by Jet"?

Jet passing through the "medium" could induce ring polarization Different sensitivity to thermal & shear terms than P_z Projection into x-y plane mimic a P_z wrt jet axis Jet axis coincide with $2^{\rm nd}$ order event plane at low multiplicity Diluted towards high multiplicity Should have a eta dependence; no precision to test with current data

Different contributions vs multiplicity?

A naïve guess of the picture Where is the switching point and what does it mean for AA?