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MATTER ANTIMATTER ASYMMETRY
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▪ Big Bang: Equal amount of matter and antimatter

𝑁𝐵 = 𝑁 ത𝐵

▪ Early Universe: 

▪ Today: Asymmetry between matter and antimatter

▪ Mismatch between expectation and measurement

𝜂 =
𝑁𝐵 −𝑁 ത𝐵

𝑁𝛾

𝜂SCM ≈ 10−18 versus     𝜂meas ≈ 10−10

Measurement: 𝐵 + ത𝐵 → 𝛾 + 𝛾 +⋯+ 𝐵 +⋯?

Theory: 𝐵 + ത𝐵 → 𝛾 + 𝛾 +⋯
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▪ Big Bang: Equal amount of matter and antimatter

𝑁𝐵 = 𝑁 ത𝐵

▪ Early Universe: 

▪ Today: Asymmetry between matter and antimatter

▪ Mismatch between expectation and measurement

𝜂 =
𝑁𝐵 −𝑁 ത𝐵

𝑁𝛾

𝜂SCM ≈ 10−18 versus     𝜂meas ≈ 10−10

▪ Andrei Sakharov (1976)

▪ Baryon Number Violation

▪ C and CP Violation

▪ Deviation from thermal equilibrium

Measurement: 𝐵 + ത𝐵 → 𝛾 + 𝛾 +⋯+ 𝐵 +⋯?

Theory: 𝐵 + ത𝐵 → 𝛾 + 𝛾 +⋯
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▪ EDM is a vectorial property aligned with the particles’ spin

▪ Magnetic Dipole Moment (MDM): Ԧ𝜇 = 𝜇 ⋅ Ԧ𝑠 with 𝜇 = 𝑔
𝑞

2𝑚

▪ Electric Dipole Moment (EDM): Ԧ𝑑 = 𝑑 ⋅ Ԧ𝑠 with 𝑑 = 𝜂EDM
𝑞

2𝑚𝑐
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▪ EDM is a vectorial property aligned with the particles’ spin

▪ Magnetic Dipole Moment (MDM): Ԧ𝜇 = 𝜇 ⋅ Ԧ𝑠 with 𝜇 = 𝑔
𝑞

2𝑚

▪ Electric Dipole Moment (EDM): Ԧ𝑑 = 𝑑 ⋅ Ԧ𝑠 with 𝑑 = 𝜂EDM
𝑞

2𝑚𝑐

𝐻 = − Ԧ𝑑 ⋅ 𝐸 − Ԧ𝜇 ⋅ 𝐵

Parity P :  𝐻 = + Ԧ𝑑 ⋅ 𝐸 − Ԧ𝜇 ⋅ 𝐵

Time T :  𝐻 = + Ԧ𝑑 ⋅ 𝐸 − Ԧ𝜇 ⋅ 𝐵

▪ According to CPT - Theorem:

T Violation = CP Violation

⇒ EDM violates both P and CP symmetry
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?

𝑑 = |𝑛𝑝 >
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Thomas – BMT Equation

▪ Measure the influence of the EDM on the spin motion

tan
|ΩEDM|

|ΩMDM|
≈ 𝜙EDM ≈ −𝜂EDM

2𝛽

𝐺

d Ԧ𝑆

d𝑛
= ΩMDM + ΩEDM × Ԧ𝑆

𝑮𝒅 −0.143

𝐺𝜇 0.001

ΩMDM = −2𝜋𝛾𝐺 Ԧ𝑒𝑦 → 𝑓MDM = 120 kHz

ΩEDM = 𝜂EDM𝛾𝛽 Ԧ𝑒𝑥

Ԧ𝑑 = 𝑑
Ԧ𝑠

Ԧ𝑠
with 𝑑 = 𝜂EDM

𝑞ℏ

2𝑚𝑐
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Thomas – BMT Equation

▪ Measure the influence of the EDM on the spin motion

d Ԧ𝑆

d𝑛
= ΩMDM + ΩEDM × Ԧ𝑆

▪ Problem: Ring imperfections (magnet misalignments,..) 

lead to rotations of ො𝑛 in radial (𝑥) and longitudinal (𝑧) 

direction

Simulations

Systematics

tan
|ΩEDM|

|ΩMDM|
≈ 𝜙EDM ≈ −𝜂EDM

𝛽

2𝐺

ΩMDM = −2𝜋𝛾𝐺 Ԧ𝑒𝑦

ΩEDM = 𝜂EDM𝛾𝛽 Ԧ𝑒𝑥

Ԧ𝑑 = 𝑑
Ԧ𝑠

Ԧ𝑠
with 𝑑 = 𝜂EDM

𝑞ℏ

2𝑚𝑐



COSY - COOLER SYNCHROTRON (1993 – 2023)
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Overview

▪ Circumference 184 m

▪ Accelerate and Store Polarized / Unpolarized

Deuterons and Protons

▪ 𝑝 = 0.3 − 3.7 GeV/c   (𝒑𝒅= 𝟗𝟕𝟎 𝐌𝐞𝐕/𝒄)

▪ Excellent Beam Quality 

▪ Hadron Physics / Precision Experiments

𝑃
Ԧ𝑠



sextupole optimization

ACHIEVEMENTS AT COSY
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𝑛

𝑛

▪ A spread in particles energy distribution leads to decoherence over time

▪ Measure 120 kHz spin tune precession to 10−10 in 100 s

▪ Development of polarization feed back system

▪ RF Wien filter (Single bunch spin manipulation)

𝑃

𝑃

𝒇𝒔 ∝ 𝜸
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𝑃
L

U

D
R

C

𝑝𝑦 ∝
𝑁𝐿 − 𝑁𝑅
𝑁𝐿 + 𝑁𝑅
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𝑃
L

U

D
R

C

𝑝𝑦 ∝
𝑁𝐿 − 𝑁𝑅
𝑁𝐿 + 𝑁𝑅 𝑃

L

U

D
R

C

𝑝𝑥𝑧 ∝
𝑁𝑈 −𝑁𝐷
𝑁𝑈 +𝑁𝐷

𝑃

L

U

D
R

C

𝑁𝑈 ∝ 𝑝𝑥𝑧 ⋅ sin(2𝜋𝑓𝑠𝑡)

𝑁𝐷 ∝ 𝑝𝑥𝑧 ⋅ sin(2𝜋𝑓𝑠𝑡 + 𝜋)

𝑝𝑥𝑧 = 𝑝𝑥
2 + 𝑝𝑦

2



COSY
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ො𝑛𝑧, Snake

ො𝑛𝑧,Sol

ො𝑛𝑥,WF & ො𝑛𝑧,WF

EDM signal!



RF WIEN FILTER
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▪ Goal: Measure 𝒏𝒙

▪ 𝐸 ⊥ 𝐵 ⊥ Beam → Ԧ𝐹𝐿 = 𝑞 ⋅ 𝐸 + Ԧ𝑣 × 𝐵 = 0

▪ 𝐵- Field can be rotated around the beam pipe by 𝝓WF

▪ Needs to run on a harmonic of the spin precession frequency

𝑓WF = 𝑓𝑠

▪ 𝐸 = 𝐸0cos(2𝜋𝑓𝑠 + 𝜙) and 𝐵 = 𝐵0cos(2𝜋𝑓𝑠 + 𝜙)

▪ Both frequencies need to have an adjustable phase relation

𝝓WF



MEASUREMENT PRINCIPLE
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Build up rate 
d

d𝑡
𝑝𝑦 𝑡

d

d𝑡
𝑝𝑦

2

∝ 𝑛 ×𝑚 ∝ 𝑛𝑥 − 𝜙WF 2
+ …



MEASUREMENT PRINCIPLE 
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d

d𝑡
𝑝𝑦

2

∝ 𝑛 ×𝑚 ∝ 𝑛𝑥 − 𝜙WF 2
+ 𝑛𝑧 − 𝜉Sol

2
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WF

𝑛𝑥,WF / mrad −2.1(12)

𝑛𝑧, WF / mrad 3.9(6)

Siberian Snake

𝑛𝑧, Snake / mrad −0.057 ±stat 0.001 ±sys 0.032

2MV Solenoid

𝑛𝑧, Sol / mrad −0.070 ±stat 0.001 ±sys 0.032

𝑛𝑧: Systematics

𝑛𝑥: EDM + Systematics

Measurement is dominated
by systematics!



SPIN DYNAMICS
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Thomas – BMT Equation

▪ Measure the influence of the EDM on the spin motion

▪ 𝑑 < 3.0 × 10−17 𝑒 ⋅ cm (95% C.L.) (Preliminary)

d Ԧ𝑆

d𝑛
= ΩMDM + ΩEDM × Ԧ𝑆

Simulations

Systematics

tan
|ΩEDM|

|ΩMDM|
≈ 𝜙EDM ≈ −𝜂EDM

𝛽

2𝐺

ΩMDM = −2𝜋𝛾𝐺 Ԧ𝑒𝑦

ΩEDM = 𝜂EDM𝛾𝛽 Ԧ𝑒𝑥

Ԧ𝑑 = 𝑑
Ԧ𝑠

Ԧ𝑠
with 𝑑 = 𝜂EDM

𝑞ℏ

2𝑚𝑐



SUMMARY
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▪ Motivation: EDMs as a source of CP violation and a 

problem solver

▪ Goal: Measure the influence of the deuteron EDM on the

beam polarization

▪ While the method works, the data cannot be interpreted

correctly

▪ We determine a first limit of the permanent deuteron

EDM

𝑑 < 3.0 × 10−17 𝑒 ⋅ cm (95% C.L.) (Preliminary)

Simulations



PERMANENT DEUTERON EDM SEARCH

Page 21 Publication in progess..



BACK UP
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INVARIANT SPIN AXIS AT THE SOLENOIDS
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Methodology

Δ𝑓𝑠

Siberian Snake at 𝐼 = −5 ෝ= − 0.075 Tm

𝑓𝑠
0

Snake On



INVARIANT SPIN AXIS AT THE SOLENOIDS
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Δ𝑓s =
𝑓rev

4𝜋

cos 𝜋
𝑓𝑠
0

𝑓rev

2
𝑘2𝐼2 + 𝑛𝑧𝑘𝐼

▪ 𝑘 translates the coil current into a spin tilit angle

▪ 𝑛𝑧 denotes the 𝑧 component of the invariant spin axis



DETAILED LOOK INTO DATA
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RESULTS
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SYSTEMATIC ESTIMATES FROM SIMULATIONS
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Max Vitz (PhD)



ELECTRIC DIPOLE MOMENTS
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Axion Search

▪ Violation of symmetries was observed in the weak sector

▪ However: not sufficient

▪ CP violation in the strong sector

▪ Limits from neutron EDM measurements limit constrain

ҧ𝜃QCD≤ 10−10 ⇒ Strong CP Problem  

▪ Problem solver: Axion or Axion Like Particles (ALPs)

▪ Existence of an axion leads to an additional oscillating EDM component

▪ Axion could explain the strong CP - problem

▪ Axion are potential candidate for Dark Matter

Ԧ𝑑 = 𝑑
Ԧ𝑠

Ԧ𝑠
with 𝑑 = 𝑑DC + 𝑑ACcos(𝜔𝑎 + 𝜙𝑎) and 𝜔𝑎 =

𝑚𝑎𝑐
2

ℏ

𝐿ഥ𝜃QCD = − ҧ𝜃QCD
𝑔𝑠
2

64𝜋2
𝜀𝜇𝜈𝛼𝛽𝐺𝜇𝜈

𝑎 𝐺𝛼𝛽
𝑎



AXION SEARCH @ COSY
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𝑑 = 𝑑DC + 𝑑AC
𝑑 cos(𝜔𝑎 + 𝜙𝑎)

𝜔𝑎 =
𝑚𝑎𝑐

2

ℏ

𝑔𝑎𝑑𝛾 < 1.7 × 10−7GeV−2

▪ Constraints for the axion gluon coupling:

𝜔𝑎

2𝜋
=

▪ 90% CL upper limit on the ALPs induced oscillating EDM

▪ Average of |𝑑AC
𝑑 | < 6.4 × 10−23𝑒 ⋅ cm



AXION SEARCH
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𝑑 = 𝑑DC + 𝑑AC
𝑑 cos(𝜔𝑎 + 𝜙𝑎)

▪ Problem: Phase is unknown!

▪ Solution: Inject 4 bunches with different spin directionality!

S. Karanth (PhD Work)



AXION SEARCH
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S. Karanth (PhD Work)



AXION SEARCH
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S. Karanth (PhD Work)



SPIN TUNE MEASUREMENT
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▪ Spin precesses with 𝑓𝑠 = 𝛾𝐺𝑓rev ≈ 121 kHz

▪ Detector handles event rates 15000
1

𝑠

▪ 1 hit per 10 precessions

▪ No direct fit possible

▪ Assume a fixed frequency 𝜈𝑠
fixed

▪ The change of spin tune is given by

𝜈𝑠 𝑡 = 𝜈𝑠
fixed +

1

2𝜋𝑓rev

𝑑𝜑𝑠
𝑑𝑡

= 𝜈𝑠
fixed + Δ𝜈𝑠 𝑡



SEXTUPOLE CORRECTION FOR SCT ENHANCEMENT
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PHASE FEEDBACK
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▪ Tasks of the phase feedback:

▪ Measures the spin precession frequency and adjusts

the Wien filter frequency to it

▪ Provides a fixed phase relation between both

frequencies



PHASE FEEDBACK
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Slope Method

▪ Phase Feedback prevents the relative phase from

changing



PHASE FEEDBACK
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Slope Method
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Slope Method



PHASE FEEDBACK
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Slope Method - Limitations



PHASE FEEDBACK
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Blue Bunch

Red Bunch

Blue Bunch Red Bunch



EDM IN THE STANDARD MODEL AND SUSY
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WHATS NEXT?
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Frozen Spin Condition

For a pure magnetic ring (E=0)

In an all – electric ring

Combined E – B Ring



SPIN TUNE MAPPING
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Spinor formalism
𝜓 = 𝑢 𝑑 𝑇

𝜓 𝜃 = 𝑡Ring𝜓(𝜃0)


