Contribution ID: 40 Type: Oral

Linearly Polarized Photon Fusion as a Precision Probe of the Tau Lepton Dipole Moments at Lepton Colliders

We present a comprehensive investigation into the anomalous magnetic dipole moment (a_{τ}) and electric dipole moment (d_{τ}) of the τ lepton using the $\gamma\gamma\to\tau^+\tau^-$ process at future lepton colliders, with the Super Tau-Charm Facility serving as a benchmark. By employing transverse-momentum-dependent factorization, we introduce novel observables derived from $\cos2\phi$, $\sin2\phi$, and $\cos4\phi$ azimuthal asymmetries to precisely probe the τ lepton's electromagnetic structure. Our analysis significantly enhances the precision of a_{τ} constraints within the photon-photon fusion process, yielding $\mathrm{Re}(a_{\tau}) \in [-4.5, 6.9] \times 10^{-3}$ at the 2σ confidence level, which approaches the precision of the Standard Model prediction. These findings highlight the considerable potential of azimuthal asymmetry measurements for high-precision determinations of fundamental particle properties at future lepton colliders.

Primary author: XU, Fang (复旦大学)

Co-authors: SHAO, Dingyu (CERN, Theoretical Physics Department); YAN, Bin (IHEP); ZHANG, Cheng (杭

州师范大学); XIANG, Hao (Fudan University)

Presenter: XU, Fang (复旦大学) Session Classification: Parallel

Track Classification: Fundamental symmetries and spin physics beyond the standard model