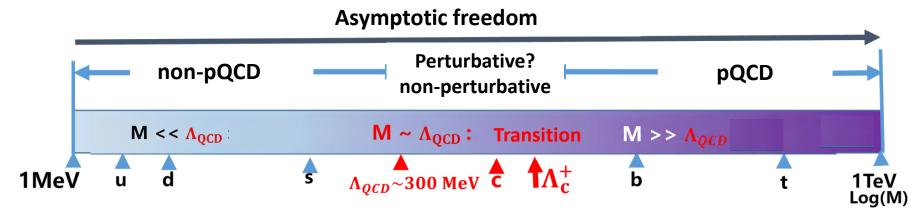


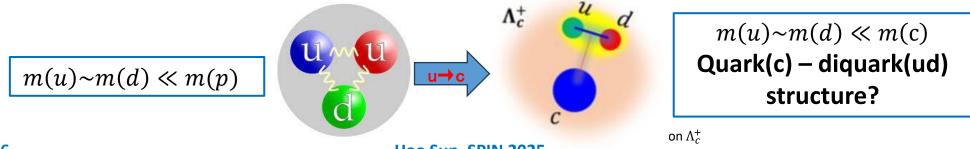
The Production and Decay Dynamics of the Lightest Charmed Baryon in e⁺e⁻ Annihilations near threshold

arXiv: 2580.11400, submitted to PRX

Hao Sun, UCAS
On behalf of the BESIII Collaboration
SPIN 2025


Sep. 2025

Outlines


- Motivation: Why study charm quarks and baryons?
- Theoretical Background: Transverse Polarization(EMFF phase difference) and Decay Asymmetry Parameters(as CPV tests)
- Experiment: BESIII, correlated baryon pairs from ee collision
- Methods: Decay Chain Angular distribution + Max. Likelihood Fit
- Results and Discussion: first observation of transverse polarization in charmed baryons; improved decay asymmetry precision
- Conclusion: Implications for future research and theoretical advancements.

Motivation: QCD in intermediate region

Charm quark (~1.27 GeV/c²): a key role in understanding the transition in the intermediate region of perturbative and non-perturbative methods of QCD.

➤ Charm baryon: structure different from nucleus and hyperons by replacing light quarks; Test of SM in charm baryons.

9/24/2026 Hao Sun, SPIN 2025

Decay Asymmetry: Penetrating CPV and QCD

- **Parity violation** in non-leptonic weak decay $\Lambda_c^+ \to B\left(\frac{1}{2}\right) P(0)$
- Described by Lee-Yang Parameters:

$$\alpha_{BP}^{\Lambda_c^+} = \frac{2\text{Re}(S^*P)}{|S|^2 + |P|^2} = \frac{|B_{-1/2}|^2 - |B_{1/2}|^2}{|B_{1/2}|^2 + |B_{-1/2}|^2}$$

$$\beta = \sqrt{1 - \alpha^2} \sin \Delta_{BP}^{\Lambda_c^+}, \gamma = \sqrt{1 - \alpha^2} \cos \Delta_{BP}^{\Lambda_c^+}, \alpha^2 + \beta^2 + \gamma^2 = 1$$

with their antiparticle counterparts: $\pmb{lpha_{BP}^{\Lambda_c^+}} = -\pmb{lpha_{BP}^{\overline{\Lambda}_c^-}}, \pmb{\Delta_{BP}^{\Lambda_c^+}} = -\pmb{\Delta_{BP}^{\overline{\Lambda}_c^-}}$

Observables for CP violation tests can be constructed:

$$A_{CP}^{\alpha} = (\alpha_{BP}^{\Lambda_c^+} + \alpha_{BP}^{\overline{\Lambda}_c^-})/(\alpha_{BP}^{\Lambda_c^+} - \alpha_{BP}^{\overline{\Lambda}_c^-}) \quad A_{CP}^{\beta} = (\beta_{BP}^{\Lambda_c^+} + \beta_{BP}^{\overline{\Lambda}_c^-})/(\beta_{BP}^{\Lambda_c^+} - \beta_{BP}^{\overline{\Lambda}_c^-})$$

Unluckily, CPV is shrouded by final state (strong) interaction between the daughter baryon and meson; while in the semi-leptonic decay the strong contribution can be separated into a global form factor.

Decay Asymmetry: Separating Strong and Weak interaction

With full knowledge of the Lee-Yang parameters, CPV and FSI can be distinguished.

When S-wave and P-wave amplitudes are dominant by one term:

$$S_1 = |S|e^{i(\delta_S + \xi_S)}$$
 $P_1 = |P|e^{i(\delta_P + \xi_P)}$

and their antiparticle counterparts are:

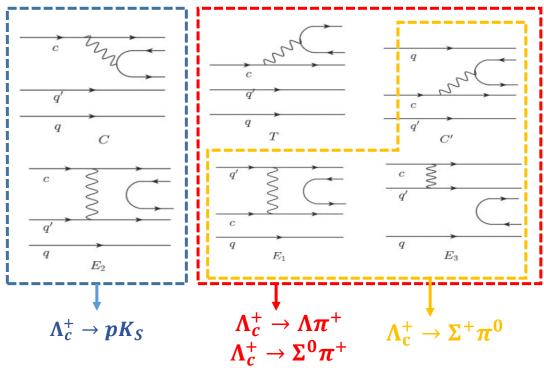
$$\overline{S}_1 = -|S|e^{i(\delta_S - \xi_S)}$$
 $\overline{P}_1 = |P|e^{i(\delta_P - \xi_P)}$

- $\xi_{S,P}$: weak phases from CKM matrix in SM, change sign with charge;
- $\delta_{S,P}$: strong phases from FSI, remain the same as charge changes
- Consequently, CPV is modified by strong phase:

$$A_{CP}^{\alpha} = -\tan(\delta_P - \delta_S)\tan(\xi_P - \xi_S)$$

 \triangleright Since $\xi_{S,P}$ are relatively small values, the strong phase angle:

$$\delta_P - \delta_S = \arctan(\beta \cdot / \alpha) + n\pi$$

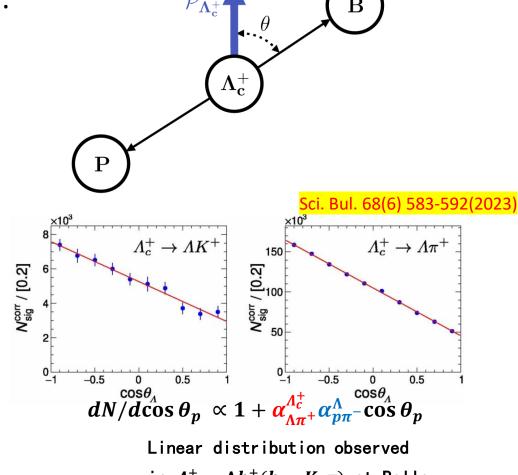

Science Bulletin 2025;70(8):1183-1185

And the shrouded CPV weak phases can be exposed.

Decay Asymmetry: Improving QCD Prediction Ability

- Combined with branch ratios, decay asymmetry parameters provide a full knowledge of the non-leptonic decay of the charmed baryons.
- Theories lacks ability of prediction due to complex inner structure and non-perturbative nature.
- The amplitudes can be divided into:
- Factorizable components:
 Separable strong and weak interaction;
 Well factorized by effective field theory;
- Non-Factorizable components:
 Inseparable strong and weak interaction;
 Global fit based on experimental input.

Only C and T diagrams include factorizable components

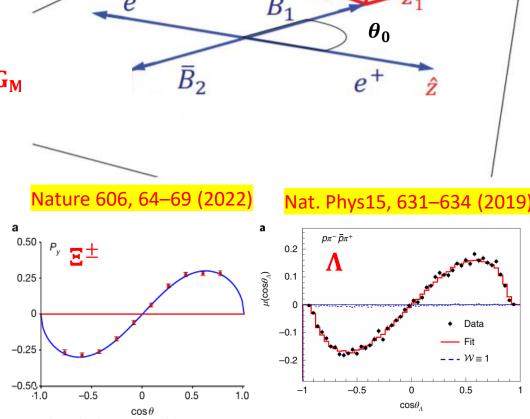

Accurate and comprehensive experimental measurements are crucial to improve theoretical prediction ability.

Decay Asymmetry: Polarization Transition

In weak decays like $\Lambda_c^+ \to B\left(\frac{1}{2}\right) P(0)$, decay asymmetry can be extracted from polarization transition between mother and daughter baryons:

$$\boldsymbol{\mathcal{P}_B} = \frac{(\alpha + \boldsymbol{\mathcal{P}_{\Lambda_c^+}} \cdot \hat{\boldsymbol{n}})\hat{\boldsymbol{n}} + \beta(\boldsymbol{\mathcal{P}_{\Lambda_c^+}} \times \hat{\boldsymbol{n}}) + \gamma\hat{\boldsymbol{n}} \times (\boldsymbol{\mathcal{P}_{\Lambda_c^+}} \times \hat{\boldsymbol{n}})}{1 + \alpha\boldsymbol{\mathcal{P}_B} \cdot \hat{\boldsymbol{n}}}$$

- \triangleright \mathcal{P}_{B} can be inferred from the helicity angular **distribution** of B's daughters in decays like $B \rightarrow$ $B_d(1/2)P(0)$ with known decay asymmetry.
- If Λ_c^+ processes **polarization** $\mathcal{P}_{\Lambda_c^+}$, α , β , γ can be obtained by polarization of the daughter \mathcal{P}_R .
- Even if **mother baryon is unpolarized**, the daughter baryon B has $\mathcal{P}_{\mathbf{R}} = \alpha \hat{\mathbf{n}}$, which lead to linear angular distribution in B's daughter baryon.
- \rightarrow Only α can be measured with non-polarized Λ_c^+
- ? How to get polarized Λ_c^+ in current experiments without the help of polarized beam??

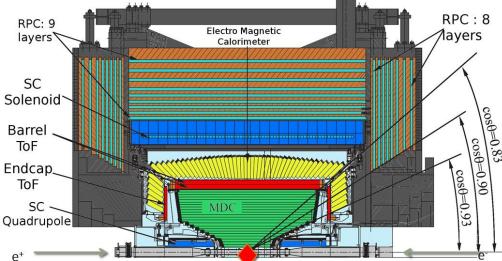

in $\Lambda_c^+ \to \Lambda h^+(h=K,\pi)$ at Belle

Transverse Polarization: a Spin-Correlation Effect

In $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ with unpolarized beams, Λ_c^+ and $\overline{\Lambda}_c^-$ are polarized in the direction **perpendicular** to the reaction plane $(\hat{\gamma})$.

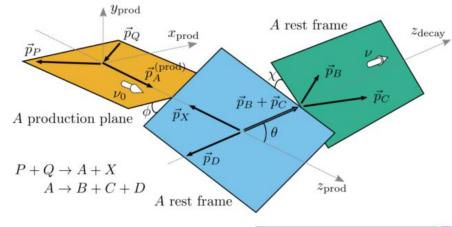
$$\begin{split} P_y(\cos\theta_0) &= \frac{3}{2(3+\alpha_0)} \sqrt{1-\alpha_0^2} \sin\theta_0 \cos\theta_0 \sin\Delta\Phi \\ \alpha_0 &= \big\{ \mathrm{R}^2 \big(1-v^2\big) - 1 \big\} / \big\{ 1 \, + \, \mathrm{R}^2 \big(1-v^2\big) \big\}, \, \mathrm{R} = |\mathbf{G}_\mathbf{E}/\mathbf{G}_\mathbf{M}| \\ \Delta\Phi &= \arg(\mathbf{G}_\mathbf{M}) - \arg(\mathbf{G}_\mathbf{E}) \end{split}$$

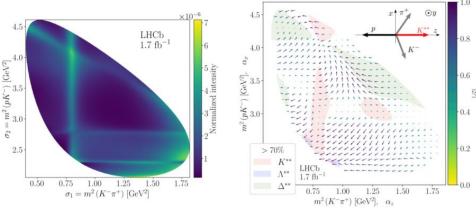
- Spin correlation between $\Lambda_c^+ \overline{\Lambda}_c^-$ from a single γ^* ;
- Generated from non-zero phase angle difference (interference) between EMFFs G_M and G_E , which we have even less knowledge about than their modules.
- Unique phenomena in pair production near threshold
- \wedge $\Lambda_{\rm c}^+$ processes non-zero $\mathcal{P}_{\mathcal{Y}}$ depending on the **specific polar angle** $\theta_{\rm 0}$ but shows no $\mathcal{P}_{\mathcal{Y}}$ with $\theta_{\rm 0}$ integrated.
- Access to $\Delta\Phi$, Λ_c^+ decay asymmetry and corresponding CPV tests at BESIII!



Transverse polarization has been observed in hyperons!

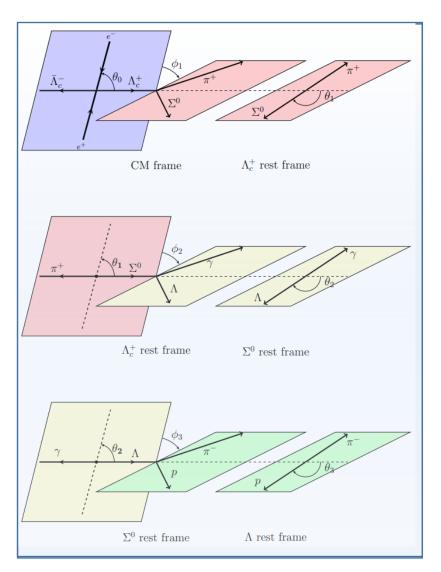
BESIII: τ-Charm Factory on BEPCII


- Operating on Beijing Electron-Positron Collider(BEPCII);
- Currently the only high-luminosity, dedicated experiment operating directly in the τ-charm region.
- Unique advantages as an ee collider experiment on charm physics thresholds:
- tunable beam energy
- clean backgrounds
- well-defined kinematic constraints
- Upgraded recently for pair production near threshold of charmed baryons;



Method: Conjoint Max.-Likelihood Analysis

- Conjoint Max.-Likelihood Fit with 5 decay chains and 13 energy points;
- Decay chains are reconstructed from Λ_c^+ to the finallevel baryons, angular distribution functions of all decay chains are used to construct likelihood:
- 1. $\Lambda_c^+ \to pK_S$: α_{pK_S} (no Δ_{pK_S} without secondary decay)
- 2. $\Lambda_c^+ \to \Lambda \pi^+$, $\Lambda \to p \pi^-$: $\alpha_{\Lambda \pi^+}$, $\Delta_{\Lambda \pi^+}$;
- 3. $\Lambda_c^+ o \Sigma^+ \pi^0$, $\Sigma^+ o p \pi^0$: $lpha_{\Sigma^+ \pi^0}$, $\Delta_{\Sigma^+ \pi^0}$;
- 4. $\Lambda_c^+ \to \Sigma^0 \pi^+$, $\Sigma^0 \to \gamma \Lambda$, $\Lambda \to p \pi^-$: $\alpha_{\Sigma^0 \pi^+}$, $\Delta_{\Sigma^0 \pi^+}$,
- 5. $\Lambda_c^+ \to pK^-\pi^+$: 3-body golden channel for \mathcal{P}_y determination.
- \triangleright 13 α_0 s and 13 $\Delta\Phi$ s, for 13 energy points;
- 13 + 13 + 7 = 33 parameters for CP conservation;
 13 + 13 + 7*2 = 40 parameters for CP violation;
- 13 energy points from 4.60 to 4.95 GeV, $\frac{13}{9}$ Multiple a data set of Lint = 6.4 fb⁻¹ Hao Sun, SPIN 2025



3-body $\Lambda_c^+ \to pK^-\pi^{+'}s$ angular distribution is constructed according to partial wave analysis results from LHCb

JHEP, 2023(7): 228(2023)

Method: Angular Distribution of Complete Chains

Machine deduction with the language of helicity amplitudes and helicity coordinate system.

$$\frac{d\Gamma}{d\cos\theta_0 d\cos\theta_1 d\phi_1} \propto 1 + \alpha_0 \cos^2\theta_0 + \mathcal{P}_T \alpha_{pK_S^0}^+ \sin\theta_1 \sin\phi_1,$$

$$\Lambda_c^+ \to pK_S \quad \mathcal{P}_T = \sqrt{1 - \alpha_0^2 \cos\theta_0 \sin\theta_0 \sin\Delta_0},$$

$$\frac{d\Gamma}{d\cos\theta_0 d\cos\theta_1 d\cos\theta_2 d\phi_1 d\phi_2} \qquad \Lambda_c^+ \to \Lambda \pi^+ \\
 \times 2 + 2\alpha_0 \cos^2\theta_0 \qquad \Lambda_c^+ \to \Sigma^+ \pi^0$$

$$+ \sqrt{1 - \alpha_0^2} \alpha_\Lambda \sin\Delta_0 \sin(2\theta_0) \sin\theta_1 \cos\theta_2 \sin\phi_1$$

$$+ \sqrt{1 - \alpha_0^2} \alpha_\Lambda \sin\Delta_0 \sin(2\theta_0) \cos\theta_1 \sin\theta_2 \sin\phi_1$$

$$+ \sqrt{1 - (\alpha_{\Lambda \pi^+}^+)^2} \cos(\Delta_1^{\Lambda \pi^+} + \phi_2)$$

$$+ \sqrt{1 - (\alpha_{\Lambda \pi^+}^+)^2} \sin(\Delta_1^{\Lambda \pi^+} + \phi_2)$$

$$+ \sqrt{1 - (\alpha_{\Lambda \pi^+}^+)^2} \sin(\Delta_1^{\Lambda \pi^+} + \phi_2)$$

$$+ \sqrt{1 - (\alpha_{\Lambda \pi^+}^+)^2} \sin(\Delta_1^{\Lambda \pi^+} + \phi_2)$$

$$+ \sqrt{1 - \alpha_0^2} \sin\Delta_0 \sin(2\theta_0) \sin\theta_1 \sin\phi_1 \alpha_{\Lambda \pi^+}^+$$

$$+ 2\alpha_0 \alpha_\Lambda \cos^2\theta_0 \cos\theta_2 \alpha_{\Lambda \pi^+}^+ + 2\alpha_\Lambda \cos\theta_2 \alpha_{\Lambda \pi^+}^+,$$

$$\frac{d\Gamma}{d\cos\theta_0 d\cos\theta_1 d\cos\theta_2 d\cos\theta_3 d\phi_1 d\phi_2}$$

$$\propto 2 + 2\alpha_0 \cos^2\theta_0 \qquad \qquad \Lambda_c^+ \rightarrow \Sigma^0 \pi^+$$

$$-\sqrt{1 - \alpha_0^2} \alpha_\Lambda \sin(2\theta_0) \sin\theta_1 \cos\theta_2 \cos\theta_3 \sin\phi_1 \sin\Delta_0$$

$$-\sqrt{1 - \alpha_0^2} \alpha_\Lambda \sin(2\theta_0) \cos\theta_1 \sin\theta_2 \cos\theta_3 \sin\Delta_0$$

$$\times \sqrt{1 - (\alpha_{\Sigma^0 \pi^+}^+)^2} \sin(\Delta_1^{\Sigma^0 \pi^+} + \phi_2)$$

$$-\sqrt{1 - \alpha_0^2} \alpha_\Lambda \sin(2\theta_0) \cos\phi_1 \sin\theta_2 \cos\theta_3 \sin\Delta_0$$

$$\times \sqrt{1 - (\alpha_{\Sigma^0 \pi^+}^+)^2} \sin(\Delta_1^{\Sigma^0 \pi^+} + \phi_2)$$

$$-\sqrt{1 - \alpha_0^2} \alpha_\Lambda \sin(2\theta_0) \cos\phi_1 \sin\theta_2 \cos\theta_3 \sin\Delta_0$$

$$\times \sqrt{1 - (\alpha_{\Sigma^0 \pi^+}^+)^2} \sin(\Delta_1^{\Sigma^0 \pi^+} + \phi_2)$$

$$+\sqrt{1 - \alpha_0^2} \sin(2\theta_0) \sin\theta_1 \sin\phi_1 \sin\Delta_0 \alpha_{\Sigma^0 \pi^+}^+$$

$$-2\alpha_0 \alpha_\Lambda \cos^2\theta_0 \cos\theta_2 \cos\theta_3 \alpha_{\Sigma^0 \pi^+}^+$$

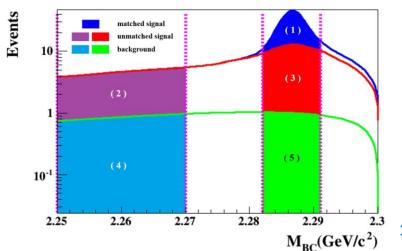
$$-2\alpha_0 \alpha_\Lambda \cos^2\theta_0 \cos\theta_2 \cos\theta_3 \alpha_{\Sigma^0 \pi^+}^+$$

$$-2\alpha_0 \cos\theta_2 \cos\theta_3 \alpha_{\Sigma^0 \pi^+}^+$$

← helicity angles

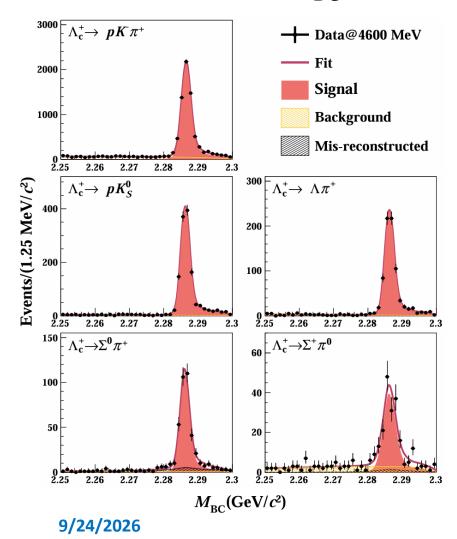
↑ angular distribution

Method: Background Subtraction

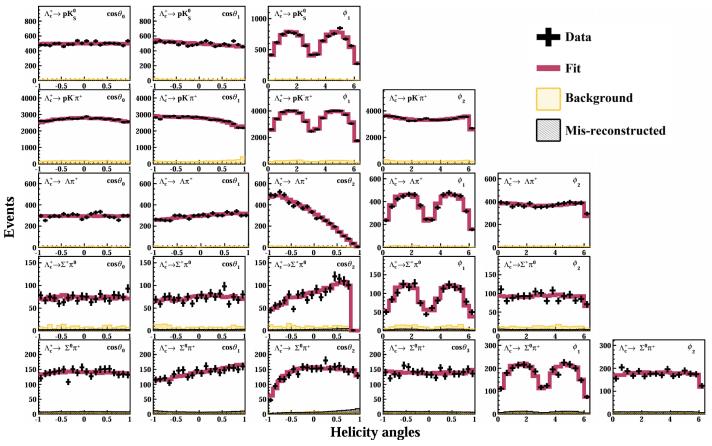

The massive likelihood fit requires backgrounds to be properly dealt with, especially the peak backgrounds and events wrongly reconstructed.

- Peak Backgrounds:
- Contributed by non-signal channels;
- Studied with cocktail MC;
- Sufficiently suppressed by optimized cuts such as PID, μ chamber/EMC information, $\Delta E = E E_{beam}$ and invariant mass.

- Wrongly Reconstructed Events:
- Signal channel events with a random γ ;
- Similar in spectrums but has different angular distribution: hard to suppress;
- Modeled by corresponding components from signal MC after truth-matching.


Backgrounds are subtracted from likelihood according to:

$$\begin{array}{c} \textbf{(1)} & \textbf{(1)} + \textbf{(3)} + \textbf{(5)} & \textbf{(3)} / \textbf{(3_{MC})} & \textbf{(3_{MC})} \\ -\ln \mathcal{L}_{(1)} &= K \times \left\{ \left(-\ln \mathcal{L}_{\text{data}}^{\text{sig}} \right) - scale_1 \times \left(-\ln \mathcal{L}_{\text{WRMC}}^{\text{sig}} \right) \\ &- scale_2 \times \left[\left(-\ln \mathcal{L}_{\text{data}}^{\text{sid}} \right) - scale_3 \times \left(-\ln \mathcal{L}_{\text{WRMC}}^{\text{sid}} \right) \right] \right\} \\ & \textbf{(5)} / \textbf{(4)} & \textbf{(2)} + \textbf{(4)} & \textbf{(2)} / \textbf{(2_{MC})} & \textbf{(2_{MC})} \end{array}$$



Method

The numbers of the components are obtained by fitting the M_{BC} spectrums

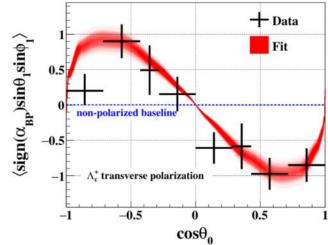
Signal MC is obtained by reweighting PHSP MC according to the fit results:

The fit results are consistent with data in all the helicity angle distribution.

Hao Sun, SPIN 2025 13

Systematic Uncertainty

参数	测量值	参数	测量值	显著性
$\alpha_{0,4600}$	$-0.226 \pm 0.030 \pm 0.004$	$\Delta_{0,4600}$	$-0.100 \pm 0.069 \pm 0.009$	2.2 σ
$\alpha_{0,4612}$	$-0.160 \pm 0.083 \pm 0.004$	$\Delta_{0,4612}$	$-0.146 \pm 0.162 \pm 0.030$	1.1σ
$\alpha_{0,4628}$	$-0.181 \pm 0.038 \pm 0.001$	$\Delta_{0,4628}$	$-0.371 \pm 0.082 \pm 0.012$	6.8σ
$\alpha_{0,4641}$	$-0.060 \pm 0.039 \pm 0.003$	$\Delta_{0,4641}$	$-0.398 \pm 0.073 \pm 0.015$	7.6σ
$\alpha_{0,4661}$	$0.008 \pm 0.044 \pm 0.003$	$\Delta_{0,4661}$	$-0.496 \pm 0.088 \pm 0.021$	8.5σ
$\alpha_{0,4682}$	$0.102 \pm 0.029 \pm 0.003$	$\Delta_{0,4682}$	$-0.502 \pm 0.054 \pm 0.021$	14.1σ
$\alpha_{0,4699}$	$0.305 \pm 0.055 \pm 0.010$	$\Delta_{0,4699}$	$-0.545 \pm 0.114 \pm 0.028$	7.1σ
$\alpha_{0,4740}$	$0.358 \pm 0.126 \pm 0.008$	$\Delta_{0,4740}$	$-0.097 \pm 0.190 \pm 0.016$	0.4σ
$\alpha_{0,4750}$	$0.347 \pm 0.079 \pm 0.004$	$\Delta_{0,4750}$	$-0.316 \pm 0.142 \pm 0.019$	3.1σ
$\alpha_{0,4781}$	$0.157 \pm 0.062 \pm 0.007$	$\Delta_{0,4781}$	$-0.395 \pm 0.126 \pm 0.028$	5.1σ
$\alpha_{0,4843}$	$0.282 \pm 0.089 \pm 0.019$	$\Delta_{0,4843}$	$-0.385 \pm 0.153 \pm 0.034$	3.6σ
$\alpha_{0,4918}$	$0.612 \pm 0.150 \pm 0.019$	$\Delta_{0,4918}$	$-0.423 \pm 0.272 \pm 0.024$	1.9σ
$\alpha_{0,4951}$	$0.744 \pm 0.179 \pm 0.007$	$\Delta_{0,4951}$	$-0.700 \pm 0.392 \pm 0.058$	1.8σ
$\alpha_{\Lambda_c^+}^{pK_s^0}$	$-0.918^{+0.133}_{-0.082} \pm 0.031$			
$lpha_{\Lambda_c^+}^{\Lambda\pi^+}$	$-0.790 \pm 0.032 \pm 0.009$	$oldsymbol{eta}_{\Lambda_c^+}^{\Lambda\pi^+}$	$0.365^{+0.173}_{-0.246} \pm 0.010$	
$\Delta_{\Lambda^+}^{\Lambda\pi^+}$	$0.637 \pm 0.444 \pm 0.014$	$\gamma_{\Lambda^+}^{\Lambda\pi^+}$	$0.493^{+0.103}_{-0.202} \pm 0.011$	
$\alpha_{\Lambda^+}^{\Sigma^0\pi^+}$	$-0.502 \pm 0.080 \pm 0.009$	$\beta_{\Lambda^+}^{\Sigma^0\pi^+}$	$0.704^{+0.143}_{-0.480} \pm 0.015$	
$\Delta_{\Lambda^+}^{\Sigma^0\pi^+}$	$2.190 \pm 0.730 \pm 0.029$	$\gamma_{\Lambda^+}^{\Sigma^{\hat{0}}\pi^+}$	$-0.502^{+0.591}_{-0.303} \pm 0.021$	
$\alpha_{\Lambda^+}^{\Sigma^+\pi^0}$	$-0.590 \pm 0.049 \pm 0.022$	$\beta_{\Lambda^+}^{\Sigma^+\pi^0}$	$0.764^{+0.051}_{-0.237} \pm 0.018$	
$\Delta_{\Lambda^+}^{\Sigma^+\pi^0}$	$1.901 \pm 0.603 \pm 0.040$	$\gamma_{\Lambda^+}^{\Lambda_c} \pi^0$	$-0.262^{+0.478}_{-0.383} \pm 0.031$	


About 3x precision of BESIII previous work(2019)

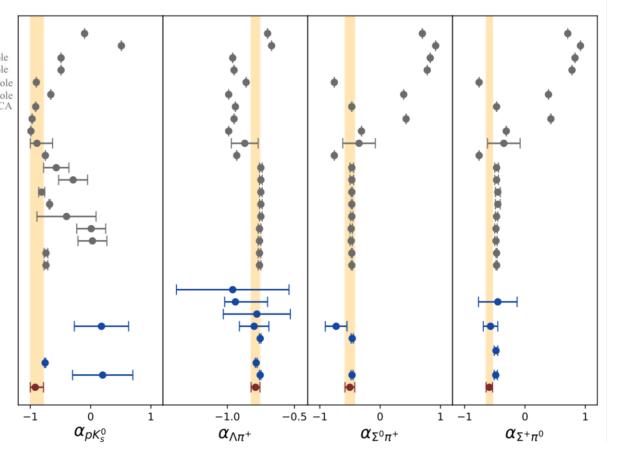
Parameters	SEL	TMP	SIG	BKG	PAR	Total
α_0	≤ 0.2	≤ 0.1	≤ 0.1	0.1 - 1.9	≤ 0.1	0.1 - 1.9
$\Delta\Phi$	≤ 0.3	≤ 0.1	0.4 - 5.8	0.6 - 2.5	≤ 0.6	0.9 - 5.8
$\alpha_{pK_S^0}$	0.1		1.1	2.9	0.1	3.1
$lpha_{\Lambda\pi^+}$	0.8			0.3	0.3	0.9
$\Delta_{\Lambda\pi^+}$	0.9		0.8	0.8	0.1	1.4
$lpha_{\Sigma^0\pi^+}$	0.3		0.1	0.8	0.2	0.9
$\Delta_{\Sigma^0\pi^+}$	1.5		1.0	2.2	0.3	2.9
$\alpha_{\Sigma^+\pi^0}$	1.1			1.2	1.4	2.2
$\Delta_{\Sigma^+\pi^0}$	1.2		1.2	3.7	0.3	4.0

- $ightharpoonup Modeling of \Lambda_c^+ op pK^-\pi^+$ is the dominant source of systematic uncertainty, but the golden channel lowers the statistic uncertainty significantly, especially for the transverse polarization parameter $\Delta\Phi$;
- Statistic Uncertainty is ~10x systematic uncertainty;

Results: Transverse Polarization

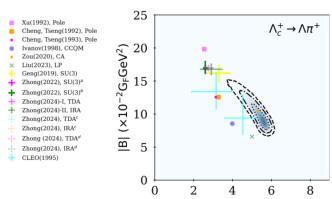
- Transverse Polarization measured at 13 energy points from 4.60 to 4.95 GeV;
- First measurement except 4.60 GeV!
- Significance of $\Delta\Phi$ exceeds 5σ at 11 energy points, with a maximum of 14.1 σ (4.68 GeV)
- First confirmation in charm baryon!
- \triangleright Large \mathcal{P}_y around 4.64 to 4.68 GeV
- Optimized region for Λ_c^+ decay asymmetry;
- ightharpoonup Combined with ho_c^+ EMFF modules, a complete measurement of ho_c^+ EMFF is achieved:
- New and comprehensive experimental constraint for theories about structure and behavior of charmed baryons.

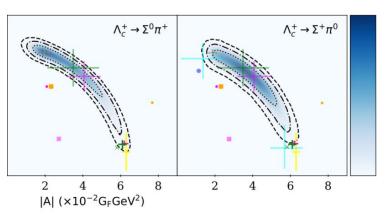
 $\sin\Delta\Phi$ line shape shows complicated behavior, inconsistent with theory predictions based on results of **EMFF modules**.


9/24/2026 Hao Sun, SPIN 2025 15

Results: Decay Asymmetry Parameters

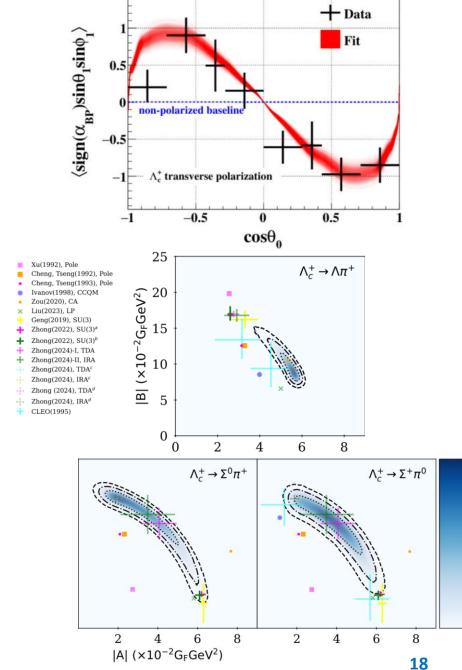
- $\sim \alpha_{pK_S^0} \sim -1$, consistent with LHCb results. Previous BESIII result with 4.60 GeV data(2019) gives positive $\alpha_{pK_S^0}$ with large uncertainty.
- The discrepancy comes from small \mathcal{P}_y at 4.60 GeV and BOSS software version.
- $\alpha_{\Sigma^+\pi^0}$ and $\alpha_{\Sigma^0\pi^+}$ are consistent within uncertainty as predicted by SU(3) flavor symmetry


Pred. and Exp.


Körner(1992), CCOM Xu(1992), Pole Cheng, Tseng(1992), Pole Cheng, Tseng(1993), Pole Zencaykowski(1994), Pole Zencavkowski (1994), Pole Alakabha Datta(1995), CA Geng(2019), SU(3) Zou(2020), CA Zhong(2022), SU(3)^a Zhong(2022), SU(3)b Liu(2023), Pole Liu(2023), LP Geng(2023), SU(3) Zhong(2024), TDA Zhong(2024), IRA Zhong(2024), TDA Zhong(2024), IRA CLEO(1990) ARGUS(1992) CLEO(1995) FOCUS(2006) BESIII(2019) Belle(2022) Belle(2022) LHCb(2024) PDG Fit This work

Results: Decay Asymmetry Parameters and CPV Phases

- Limited by statistics, the precision of the decay asymmetry measurement at BESIII is far inferior to the results of Belle and LHCb.
- But clean background and well-defined kinematic constraints at BESIII enable:
- Comprehensive measurement of decay asymmetry with more challenging decay chains;
- This work determine the parameters β and γ of $\Lambda_c^+ \to \Sigma^0 \pi^+$ and $\Sigma^+ \pi^0$ with unprecedented precision and provide results of $\Lambda_c^+ \to \Lambda \pi^+$ consistent with LHCb.
- A comprehensive knowledge of α , β and γ , i.e. s and p amplitudes, enables experimental test on theories and extract of strong phases and CPV weak phases.
- First CPV test with $\Lambda_c^+ \to \Sigma^0 \pi^+$ and $\Sigma^+ \pi^0$, no significant CPV is observed as SM predicted
- But unlike hyperon, relatively large strong phases light hope in CPV search with charmed baryons.



=					
	Parameter	$\Lambda_c^+ \to p K_S^0$	$\Lambda_c^+ \to \Lambda \pi^+$	$\Lambda_c^+ \to \Sigma^0 \pi^+$	$\Lambda_c^+ \to \Sigma^+ \pi^0$
	$\langle \alpha_{BP} \rangle$	$-0.918^{+0.133}_{-0.082} \pm 0.031$	$-0.790 \pm 0.032 \pm 0.009$	$-0.502 \pm 0.080 \pm 0.009$	$-0.590 \pm 0.049 \pm 0.022$
	$\langle \Delta_{BP} angle$		$0.637 \pm 0.444 \pm 0.014$	$2.190 \pm 0.730 \pm 0.029$	$1.901 \pm 0.603 \pm 0.040$
	$\langle \beta_{BP} \rangle$	•••	$0.365^{+0.173}_{-0.246} \pm 0.010$	$0.704^{+0.143}_{-0.480} \pm 0.015$	$0.764^{+0.051}_{-0.237} \pm 0.018$
	$\langle \gamma_{BP} \rangle$	•••	$0.637^{+0.103}_{-0.202} \pm 0.011$	$-0.502^{+0.591}_{-0.303} \pm 0.021$	$-0.262^{+0.478}_{-0.383} \pm 0.031$
	$\delta_p - \delta_s$	•••	$2.71^{+0.28}_{-0.17} \pm 0.02$	$2.19^{+0.49}_{-0.13} \pm 0.02$	$2.23^{+0.19}_{-0.06} \pm 0.03$
	$A_{CP}^{lpha_{BP}}$	$0.079^{+0.115}_{-0.101} \pm 0.019$	$0.002 \pm 0.047 \pm 0.017$	$0.206^{+0.188}_{-0.156} \pm 0.028$	$-0.086 \pm 0.081 \pm 0.085$
	$ an\phi_{CP}$		$0.232 \pm 0.242 \pm 0.025$	$0.393 \pm 0.651 \pm 0.042$	$-0.007 \pm 0.474 \pm 0.034$
_	$\tan \Delta_s$	•••	$-0.475 \pm 0.242 \pm 0.029$	$-1.411 \pm 0.672 \pm 0.062$	$-1.297 \pm 0.478 \pm 0.068$

Summary:

- Simultaneous determination across 13 Ecms between 4.60 and 4.95 GeV of transverse polarization and the decay-asymmetry for four two-body weak decay modes.
- First observation of transverse polarization in charmed baryons.
- CPV tests in the lightest charmed baryons;
- Comprehensive information essential for understanding the production and weak decay of the lightest charmed baryon.
- The results enhances the understanding of CP violation and flavor physics in the charm sector.

9/24/2026 Hao Sun, SPIN 2025

Thanks!

9/24/2026 Hao Sun, SPIN 2025 19