Measurement of TSSA for forward π^0 in (non-)diffractive like events at RHICf and STAR **SPIN2025** **September/24/2025** Seunghwan Lee (RIKEN) for the RHICf and STAR collaborations ## Transverse single spin asymmetry (A_N) Definition $$A_N \equiv rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$ ullet The transverse single-spin asymmetry (A_N) represents a left-right asymmetry in particle production and reflects the underlying spin-transverse momentum correlations in a transversely polarized proton. ## Transverse single spin asymmetry (A_N) Theoretical framework Sivers and Collins effects in pp collisions - These frameworks are related to the transverse spin structure of proton - Sivers and Collins frameworks can predict the large A_N (pQCD prediction ~ 0) ## Transverse single spin asymmetry (A_N) #### Measurements - R. D. Klem et al., Phys. Rev. Lett. 36, 929 (1976) - D. L. Adams et al., Phys. Lett. B264, 462 466 (1991) - C. E. Allgowe et al., Phys. Rev. D 65, 092008 (2002) - I. Arsene et al., Phys. Rev. Lett. 101, 0420010 (2008) (STAR) J. Adam et al., PRD 103, 092009 (2021) ullet Non-zero A_{N} for π^{\pm} and π^{0} in forward region ## RHICf experiment - RHICf detector installed in the far forward ($\eta > 6$) region of the STAR detector to collect transversally polarized p + p collisions at $\sqrt{s} = 510$ GeV, operated in 2017 - RHICf detector consists of a large tower (TL, 40mm) and a small tower (TS, 20 mm), Each tower is composed of 4 position layers (1 mm) and 16 scintillating plate ## RHICf results - RHICf Collaboration has successfully measured the A_N of π^0 and n in P_T < 1.0 GeV/c and $\eta > 6$ - ullet RHICf has reported the non-zero A_N for π^0 and n ($\eta > 6$) in non-perturbative QCD regime # $A_{ m N}$ for forward π^0 in different coverage - $A_{ m N}$ for forward (2.7 < η < 4) and RHICf (η > 6, $p_{ m T}$ < 0.2 GeV/c) π^0 exhibit similar $x_{ m F}$ scaling behavior - Large A_N for RHICf π^0 may be contributed by other mechanisms, diffraction, or resonance particles # $A_{\rm N}$ of forward π^0 contributions STAR, PRD 103, 092009 (2021) - STAR has reported the A_N of isolated and non-isolated π^0 in EM-jets - ullet The results suggest that diffractive processes may contribute to the large $A_{ m N}$ of forward π^0 - We focus on investigating the contribution of diffractive processes to the A_N of RHICf π^0 , through a combined RHICf+STAR analysis. ## Diffraction in p + p collisions #### Diffractive process features: - Color Singlet Exchange (Pomeron exchange) - Large Rapidity Gap - Final state proton ullet Color Singlet (such as photon or pomeron) exchange could contribute to the $A_{ m N}$ ## Event classification method #### **◆**Condition definition - Detector signal on-off cut is determined by min-bias trigger events - Event classification method is based on the large rapidity gap in diffractive process ### Legend: No signal ## (Non-)Diffractive-Likely-Event (DLE) We classified the three different processes with detector correlations ## RHICf π^0 measurement • Definition of RHICf π^0 type $p_{\rm T}$ and $x_{\rm F}$ correlations for π^0 - ullet π^0 candidates are selected based on the two-gamma invariant mass - Background estimation has been conducted by using Gaussian Process Regression method - Energy resolution σ_E ~3.5% and transverse momentum resolution $\sigma_{p_{\rm T}}$ ~4.5% for π^0 are observed RHICf, PRL 124, 252501 (2020) ## $A_{\rm N}$ of RHICf π^0 calculation - A_N was calculated using the luminosity-based formula - A dilution factor was applied to correct for the ϕ modulation of π^0 due to the finite detector acceptance # Background $A_{\rm N}$ of RHICf π^0 subtraction $$A_{\mathrm{N}}^{S} = \left(1 + \frac{N_{B}}{N_{S}}\right) A_{\mathrm{N}}^{S+B} - \left(\frac{N_{B}}{N_{S}}\right) A_{\mathrm{N}}^{B}$$ $A_{\rm N}^{S+B}$ = Signal + background $A_{\rm N}$ withtin 3σ $A_{\rm N}^B$ = Background $A_{\rm N}$ in 5σ away from mass peak A_{N}^{S} = Subtracted A_{N} $N_{B(S)}$ = Integrated counts of background (signal) within 3σ - ullet Background subtraction was performed using $A_{ m N}^B$ and the background-to-signal ratio (B/S ratio) within the 3σ of the mass peak - $A_{\rm N}^{B}$ was estimated from background events located more than 5σ away from the mass peak. ## **Results** **DDLE** **NDLE** • We observed the non-zero $A_{\rm N}$ of RHICf π^0 under the SDLE, DDLE and NDLE conditions ullet The SDLE and DDLE show similar behavior and exhibit a more enhanced $A_{ m N}$ compared to the inclusive result • NDLE condition shows a suppressed A_N relative to the inclusive result **SDLE** ## Results - It shows different A_N values for S/DDLE and NDLE compared with inclusive result as a function of x_F - Diffractive process may contribute the large $A_{\rm N}$ in $\eta > 6$ region ## Summary • $A_{\rm N}$ is measured for (non-)diffractive like events in $p^\uparrow + p$ collision at $\sqrt{s} = 510$ GeV at RHICf and STAR experiments ullet Non-zero $A_{ m N}$ values of RHICf π^0 are observed across all classified event types • A_N values for SDLE and DDLE show an enhancement relative to the inclusive events In contrast, A_N for NDLE is suppressed compared to the inclusive event ullet These results suggest that diffractive processes may contribute to the large $A_{ m N}$ observed in the very forward region. **SPIN2025** # Thank you for your attention!