

Experimental study of fragmentation functions at BESIII

Yateng Zhang

(On behalf of the BESIII Collaboration)

Zhengzhou University

26th International Symposium on Spin Physics (SPIN2015)

Several open questions about QCD and FF

- Confinement, no existing isolated quarks or gluons
- Nucleon structure, what is the origin of nucleon spin and mass in terms of quarks and gluons degree of freedom

Fragmentation Functions (FFs):

- $D_q^h(z)$: describe the fragmentation of an quark into an hadron, where the hadron carries a fraction $z = 2E_h/\sqrt{s}$ of parton's momentum
- Helps us understand the mechanism of color confinement.
- Extract accurately Parton Distribution Functions (PDFs).

Access FFs with QCD factorization

$$e^+e^-: \sigma = \sum_q \sigma(e^+e^- \to q\bar{q}) \otimes FF$$

- No PDFs necessary
- Calculations know at NNLO
- Flavor structure not directly accessible

SIDIS:
$$\sigma = \sum_{q} PDF \otimes \sigma(eq \rightarrow e'q') \otimes FF$$

- Depend on unpolarized PDFs
- Flavor structure directly accessible
- FFs and PDFs

pp:
$$\sigma = \sum_{q} PDF \otimes PDF \otimes \sigma(q_1q_1 \rightarrow q'_1q'_2) \otimes FF$$

- Depend on unpolarized PDFs
- Leading access to gluon FF
- Parton momenta not directly known
- SIA @ e⁺e⁻: the cleanest input for FFs fitting

FFs $@ e^+e^-$ Experment

Leading Quark TMDFFs

		Quark Polarization				
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
Unpolarized	Hadrons	D_1 = $lacktriangle$ Unpolarized		$H_1^{\perp} = \underbrace{\dagger}_{\text{Collins}} - \underbrace{\dagger}_{\text{Collins}}$		
Polarized Hadrons	L		$G_1 = \longrightarrow - \longrightarrow \longrightarrow$	$H_{1L}^{\perp} = $		
	т	$D_{1T}^{\perp} = \underbrace{\bullet}_{\text{Polarizing FF}}^{\bullet} - \underbrace{\bullet}_{\text{Polarizing FF}}^{\bullet}$	$G_{1T}^{\perp} = \stackrel{\uparrow}{\longleftarrow} - \stackrel{\uparrow}{\longleftarrow}$	$H_1 = 1 - 1$ Transversity $H_{1T}^{\perp} = 1 - 1$		

Experimental observable

$$\frac{1}{\sigma_{had,tot}} \frac{d\sigma_h}{dz}$$

Leading order

$$\checkmark e^+e^- \rightarrow hX \sim \sum_q e_q^2 D_1^{h/q}(z)$$

$$\checkmark e^+e^- \rightarrow q\bar{q} \rightarrow h_1h_2X$$

$$\sim \cos(2\phi_0) H_1^{\perp}(\mathbf{z}_1) \otimes H_2^{\perp}(\mathbf{z}_2)$$

World π , K & η data @ e⁺e⁻

- Precision data includes charged π , K
- Data sets at $\sqrt{s} < 10 \text{ GeV } \underline{e}^{\pm}\underline{e}^{-}$ collision?
 - high z data sets?
- R scan data @ BESIII: $\sim 10 \text{ pb}^{-1}$ @ each \sqrt{s}

BEPCII/BESIII

Drouble-ring, symmetry, multi-bunch e⁺ e⁻ collider

 $E_{cm} = 1.84 \text{ to } 4.95 \text{ GeV}$

Energy spread: $\Delta E \approx 5 \times 10^{-4}$

Peak luminosity in continuously operation @ E_{cm} = 3.77 GeV: 1.1×10^{33} cm⁻²s⁻¹

Main Drift Chamber

Small cell, 43 layer

 σ_{xy} =130 μ m dE/dx~6%

 $\sigma_p/p=0.5\%$ at 1 GeV

Time Of Flight

Plastic scintillator σ_T (barrel): 65 ps σ_T (endcap): 110 ps

(update to 60 ps with MRPC)

Electromagnetic Calorimeter

CsI(Tl): L=28 cm Barrel σ_E =2.5% Endcap σ_E =5.0%

Muon Counter

RPC
Barrel: 9 layers
Endcap: 8
layers
σ_{spatial}: 1.48
cm

Data samples collected at BESIII

Data sets collected so far include:

- $\geq 10 \times 10^9 J/\psi$ events
- $\geq 2.7 \times 10^9 \, \psi'$ events
- Scan data [2.0, 3.08] GeV; [3.735, 4.600]
 GeV, 130 energy points, about 2.0 fb⁻¹
- ➤ Large data sets for XYZ study above 4.0 GeV about 22 fb⁻¹

Analysis at BESIII

 \triangleright Normalized differential cross section (take h as an example):

$$\frac{1}{\sigma_{\text{had}}} \frac{d\sigma_{h}}{dp_{h}} = \frac{N_{h}}{N_{\text{had}}} \frac{1}{\Delta p_{h}} f$$

► Hardronic events N_{had} : $R \equiv \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

PRL 128 062004(2022)

Inclusive π^0/K_S^0 production

\sqrt{s} (GeV)	$\mathcal{L}\ (pb^{-1})$	$N_{ m had}^{ m tot}$	$N_{ m bkg}$
2.2324	2.645	83227	2041
2.4000	3.415	96627	2331
2.8000	3.753	83802	2075
3.0500	14.89	283822	7719
3.4000	1.733	32202	843
3.6710	4.628	75253	6461

PRL 130 231901(2023)

Results: inclusive π^0

Theory support: Hongxi Xing, Daniele Anderle

Compared with theoretical estimation

Results: Inclusive K_S^0 Compared with theoretical estimation

Theory support: Hongxi Xing, Daniele Anderle

PRL.130.231901

Results: inclusive π^0/K_s^0

PRL 130 231901(2023) **B€5Ⅲ**

- From theory side: fitting with BESIII data, hadron mass effect, large *z* re-summation, and so on
- From experimental side
 - Primary hadron vs from resonance decay \Rightarrow measure $e^+e^- \rightarrow \rho(\omega, \phi) + X$, and so on
 - Contribution of vector states ρ^* , ω^* and ϕ^* $\Rightarrow e^+ e^- \rightarrow \rho^*/\omega^*/\phi^* \rightarrow h + X$

Results: inclusive π^0/K_s^0

theory

- PRD 110 014019 (2024): NNLO & hadron mass correction for K_S
- arXiv:2404.11527: NNLO & higher twist contribution for π^0

Inclusive η production

PRL 133, 021901 (2024)

 $\sigma \approx \sigma^{LT} \left[1 + \sum_{i} N_i \frac{x^{a_i} (1 - x)^{b_i}}{Q^{2i}} \right]$

• PRD83 (2001) 034002 prediction vs. BESIII data: tension! BESIII fit: detail @ Phys. Rev. D 111, 034030 (2025)

- $\sqrt{s} > 10 \text{GeV e}^+\text{e}^- \text{data } + \text{BESIII data}$
- NNLO accuracy, hadron mass correction & higher twist contributions

Inclusive π^{\pm}/K^{\pm} production

arXiv: 2502.16084

TABLE I. The integrated luminosities and the numbers of total selected hadronic and residual background events in different c.m. energies.

$\sqrt{s} \; (\mathrm{GeV})$	\mathcal{L} (pb ⁻¹)	$N_{ m had}^{ m tot}$	$N_{ m bkg}$
2.0000	10.074	350298 ± 592	8722 ± 94
2.2000	13.699	445019 ± 668	10737 ± 104
2.3960	66.869	1869906 ± 1368	47550 ± 219
2.6444	33.722	817528 ± 905	21042 ± 146
2.9000	105.253	2197328 ± 1483	56841 ± 239
3.0500	14.893	283822 ± 533	7719 ± 88
3.5000	3.633	62670 ± 251	1691 ± 42
3.6710	4.628	75253 ± 275	6461 ± 81

- ✓ Center-of-mass energies: 2.0 3.671 GeV, 8 energy points
- ✓ z coverage: 0.13 to 0.95 for π^{\pm} , 0.30 to 0.95 for K^{\pm}
- ✓ Highest experimental precision \sim 1(2)% at z \sim 0.3 0.5 for π^{\pm} and K^{\pm}

Inclusive π^{\pm}/K^{\pm} production

arXiv: 2502.16084

✓ The measured π^{\pm} cross sections are consistent with the previously reported π^{0} cross-sections by BESIII

✓ The K^{\pm} cross sections are systematically higher than the K_S^0 cross sections by a factor of approximately 1.4.

Results: inclusive π^{\pm}/K^{\pm}

arXiv: 2502.16084

- $\sqrt{s} > 3.0 \text{ GeV}$, $E_h > 0.8 \text{ GeV}$
- Charge conjugation symmetry and flavor symmetries among favored (unfavord) quark FFs assumed
- s quark FF shares the same shape as the \bar{u} quark FF

$$\begin{split} D_i^{\pi^0} &= \frac{1}{2} \Big(D_i^{\pi^+} + D_i^{\pi^-} \Big) \\ D_q^{K_S^0} &= \frac{1}{2} \Big(D_{q'}^{K^+} + D_{q'}^{K^-} \Big) \end{split}$$

- ✓ Consistent with NPC fit results
- ✓ Support isospin symmetry of K^{\pm} and K_S^0

Prospects of FFs at BESIII

Higher center-of-mass energy

- Broader hard scale Q coverage
- heavy flavors: Λ , D^0
- Hadron mass correction is smaller

High luminosity

- From exploratory to precision measurements
- Multi-dimensional binning of the measurements
 - Currently mainly on z and Q², P_t of hadron is crucial (now with Gaussian assumption)

Summary

- The knowledge of FFs is an important ingredient in our understanding of non-perturbative QCD dynamics. e^+e^- annihilation experiments provide the cleanest environment to measure FFs.
- Two types of fragmentation functions can be studied at BEPCII/BESIII
 - ➤ Unpolarized fragmentation function
 - ✓ Unique Q<10 GeV data
 - ✓ More results from Λ, Σ
 - Collins fragmentation function
 - ✓ Essential input in the 3D imaging era of the nucleon structure study
 - ✓ More results from $K\pi + X$ and KK + X

