Experimental study of fragmentation functions at BESIII Yateng Zhang (On behalf of the BESIII Collaboration) Zhengzhou University 26th International Symposium on Spin Physics (SPIN2015) #### Several open questions about QCD and FF - Confinement, no existing isolated quarks or gluons - Nucleon structure, what is the origin of nucleon spin and mass in terms of quarks and gluons degree of freedom #### **Fragmentation Functions (FFs):** - $D_q^h(z)$: describe the fragmentation of an quark into an hadron, where the hadron carries a fraction $z = 2E_h/\sqrt{s}$ of parton's momentum - Helps us understand the mechanism of color confinement. - Extract accurately Parton Distribution Functions (PDFs). ### Access FFs with QCD factorization $$e^+e^-: \sigma = \sum_q \sigma(e^+e^- \to q\bar{q}) \otimes FF$$ - No PDFs necessary - Calculations know at NNLO - Flavor structure not directly accessible **SIDIS**: $$\sigma = \sum_{q} PDF \otimes \sigma(eq \rightarrow e'q') \otimes FF$$ - Depend on unpolarized PDFs - Flavor structure directly accessible - FFs and PDFs **pp**: $$\sigma = \sum_{q} PDF \otimes PDF \otimes \sigma(q_1q_1 \rightarrow q'_1q'_2) \otimes FF$$ - Depend on unpolarized PDFs - Leading access to gluon FF - Parton momenta not directly known - SIA @ e⁺e⁻: the cleanest input for FFs fitting ## FFs $@ e^+e^-$ Experment #### Leading Quark TMDFFs | | | Quark Polarization | | | | | |-------------------|---------|--|--|---|--|--| | | | Un-Polarized
(U) | Longitudinally Polarized (L) | Transversely Polarized
(T) | | | | Unpolarized | Hadrons | D_1 = $lacktriangle$ Unpolarized | | $H_1^{\perp} = \underbrace{\dagger}_{\text{Collins}} - \underbrace{\dagger}_{\text{Collins}}$ | | | | Polarized Hadrons | L | | $G_1 = \longrightarrow - \longrightarrow \longrightarrow$ | $H_{1L}^{\perp} = $ | | | | | т | $D_{1T}^{\perp} = \underbrace{\bullet}_{\text{Polarizing FF}}^{\bullet} - \underbrace{\bullet}_{\text{Polarizing FF}}^{\bullet}$ | $G_{1T}^{\perp} = \stackrel{\uparrow}{\longleftarrow} - \stackrel{\uparrow}{\longleftarrow}$ | $H_1 = 1 - 1$ Transversity $H_{1T}^{\perp} = 1 - 1$ | | | #### Experimental observable $$\frac{1}{\sigma_{had,tot}} \frac{d\sigma_h}{dz}$$ #### Leading order $$\checkmark e^+e^- \rightarrow hX \sim \sum_q e_q^2 D_1^{h/q}(z)$$ $$\checkmark e^+e^- \rightarrow q\bar{q} \rightarrow h_1h_2X$$ $$\sim \cos(2\phi_0) H_1^{\perp}(\mathbf{z}_1) \otimes H_2^{\perp}(\mathbf{z}_2)$$ ### World π , K & η data @ e⁺e⁻ - Precision data includes charged π , K - Data sets at $\sqrt{s} < 10 \text{ GeV } \underline{e}^{\pm}\underline{e}^{-}$ collision? - high z data sets? - R scan data @ BESIII: $\sim 10 \text{ pb}^{-1}$ @ each \sqrt{s} #### **BEPCII/BESIII** **Dr**ouble-ring, symmetry, multi-bunch e⁺ e⁻ collider $E_{cm} = 1.84 \text{ to } 4.95 \text{ GeV}$ Energy spread: $\Delta E \approx 5 \times 10^{-4}$ Peak luminosity in continuously operation @ E_{cm} = 3.77 GeV: 1.1×10^{33} cm⁻²s⁻¹ #### Main Drift Chamber Small cell, 43 layer σ_{xy} =130 μ m dE/dx~6% $\sigma_p/p=0.5\%$ at 1 GeV #### Time Of Flight Plastic scintillator σ_T (barrel): 65 ps σ_T (endcap): 110 ps (update to 60 ps with MRPC) #### Electromagnetic Calorimeter CsI(Tl): L=28 cm Barrel σ_E =2.5% Endcap σ_E =5.0% #### Muon Counter RPC Barrel: 9 layers Endcap: 8 layers σ_{spatial}: 1.48 cm ### Data samples collected at BESIII #### Data sets collected so far include: - $\geq 10 \times 10^9 J/\psi$ events - $\geq 2.7 \times 10^9 \, \psi'$ events - Scan data [2.0, 3.08] GeV; [3.735, 4.600] GeV, 130 energy points, about 2.0 fb⁻¹ - ➤ Large data sets for XYZ study above 4.0 GeV about 22 fb⁻¹ ### Analysis at BESIII \triangleright Normalized differential cross section (take h as an example): $$\frac{1}{\sigma_{\text{had}}} \frac{d\sigma_{h}}{dp_{h}} = \frac{N_{h}}{N_{\text{had}}} \frac{1}{\Delta p_{h}} f$$ ► Hardronic events N_{had} : $R \equiv \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ PRL 128 062004(2022) ### Inclusive π^0/K_S^0 production | \sqrt{s} (GeV) | $\mathcal{L}\ (pb^{-1})$ | $N_{ m had}^{ m tot}$ | $N_{ m bkg}$ | |------------------|--------------------------|-----------------------|--------------| | 2.2324 | 2.645 | 83227 | 2041 | | 2.4000 | 3.415 | 96627 | 2331 | | 2.8000 | 3.753 | 83802 | 2075 | | 3.0500 | 14.89 | 283822 | 7719 | | 3.4000 | 1.733 | 32202 | 843 | | 3.6710 | 4.628 | 75253 | 6461 | PRL 130 231901(2023) #### Results: inclusive π^0 Theory support: Hongxi Xing, Daniele Anderle #### **Compared with theoretical estimation** # Results: Inclusive K_S^0 Compared with theoretical estimation Theory support: Hongxi Xing, Daniele Anderle PRL.130.231901 # Results: inclusive π^0/K_s^0 PRL 130 231901(2023) **B€5Ⅲ** - From theory side: fitting with BESIII data, hadron mass effect, large *z* re-summation, and so on - From experimental side - Primary hadron vs from resonance decay \Rightarrow measure $e^+e^- \rightarrow \rho(\omega, \phi) + X$, and so on - Contribution of vector states ρ^* , ω^* and ϕ^* $\Rightarrow e^+ e^- \rightarrow \rho^*/\omega^*/\phi^* \rightarrow h + X$ # Results: inclusive π^0/K_s^0 theory - PRD 110 014019 (2024): NNLO & hadron mass correction for K_S - arXiv:2404.11527: NNLO & higher twist contribution for π^0 # Inclusive η production PRL 133, 021901 (2024) $\sigma \approx \sigma^{LT} \left[1 + \sum_{i} N_i \frac{x^{a_i} (1 - x)^{b_i}}{Q^{2i}} \right]$ • PRD83 (2001) 034002 prediction vs. BESIII data: tension! BESIII fit: detail @ Phys. Rev. D 111, 034030 (2025) - $\sqrt{s} > 10 \text{GeV e}^+\text{e}^- \text{data } + \text{BESIII data}$ - NNLO accuracy, hadron mass correction & higher twist contributions ## Inclusive π^{\pm}/K^{\pm} production arXiv: 2502.16084 TABLE I. The integrated luminosities and the numbers of total selected hadronic and residual background events in different c.m. energies. | $\sqrt{s} \; (\mathrm{GeV})$ | \mathcal{L} (pb ⁻¹) | $N_{ m had}^{ m tot}$ | $N_{ m bkg}$ | |------------------------------|-----------------------------------|-----------------------|-----------------| | 2.0000 | 10.074 | 350298 ± 592 | 8722 ± 94 | | 2.2000 | 13.699 | 445019 ± 668 | 10737 ± 104 | | 2.3960 | 66.869 | 1869906 ± 1368 | 47550 ± 219 | | 2.6444 | 33.722 | 817528 ± 905 | 21042 ± 146 | | 2.9000 | 105.253 | 2197328 ± 1483 | 56841 ± 239 | | 3.0500 | 14.893 | 283822 ± 533 | 7719 ± 88 | | 3.5000 | 3.633 | 62670 ± 251 | 1691 ± 42 | | 3.6710 | 4.628 | 75253 ± 275 | 6461 ± 81 | - ✓ Center-of-mass energies: 2.0 3.671 GeV, 8 energy points - ✓ z coverage: 0.13 to 0.95 for π^{\pm} , 0.30 to 0.95 for K^{\pm} - ✓ Highest experimental precision \sim 1(2)% at z \sim 0.3 0.5 for π^{\pm} and K^{\pm} ### Inclusive π^{\pm}/K^{\pm} production arXiv: 2502.16084 ✓ The measured π^{\pm} cross sections are consistent with the previously reported π^{0} cross-sections by BESIII ✓ The K^{\pm} cross sections are systematically higher than the K_S^0 cross sections by a factor of approximately 1.4. # Results: inclusive π^{\pm}/K^{\pm} arXiv: 2502.16084 - $\sqrt{s} > 3.0 \text{ GeV}$, $E_h > 0.8 \text{ GeV}$ - Charge conjugation symmetry and flavor symmetries among favored (unfavord) quark FFs assumed - s quark FF shares the same shape as the \bar{u} quark FF $$\begin{split} D_i^{\pi^0} &= \frac{1}{2} \Big(D_i^{\pi^+} + D_i^{\pi^-} \Big) \\ D_q^{K_S^0} &= \frac{1}{2} \Big(D_{q'}^{K^+} + D_{q'}^{K^-} \Big) \end{split}$$ - ✓ Consistent with NPC fit results - ✓ Support isospin symmetry of K^{\pm} and K_S^0 ### Prospects of FFs at BESIII #### Higher center-of-mass energy - Broader hard scale Q coverage - heavy flavors: Λ , D^0 - Hadron mass correction is smaller #### High luminosity - From exploratory to precision measurements - Multi-dimensional binning of the measurements - Currently mainly on z and Q², P_t of hadron is crucial (now with Gaussian assumption) ### Summary - The knowledge of FFs is an important ingredient in our understanding of non-perturbative QCD dynamics. e^+e^- annihilation experiments provide the cleanest environment to measure FFs. - Two types of fragmentation functions can be studied at BEPCII/BESIII - ➤ Unpolarized fragmentation function - ✓ Unique Q<10 GeV data - ✓ More results from Λ, Σ - Collins fragmentation function - ✓ Essential input in the 3D imaging era of the nucleon structure study - ✓ More results from $K\pi + X$ and KK + X