Solid Spin, TMD & GPD Programs

Zhihong Ye,

Department of Physics, Tsinghua University

On behalf of the SoLID Collaboration

SoLID@12-GeV JLab: QCD at the intensity frontier 2/32

> SoLID will maximize the science return of the 12-GeV CEBAF upgrade by combining...

High Luminosity
10³⁷⁻³⁹/cm²/s
[>100x CLAS12][>1000x EIC]

Large Acceptance Full azimuthal ϕ coverage

- \triangleright Perform high-luminosity valence quark tomography. Search new physics w/ parity-violation deep inelastic scattering (PVDIS), and measure precise J/ ψ production near threshold
- > Synergizing with the pillars of EIC science (proton spin and mass)

SoLID whitepaper: J. Phys. G: Nuclear and Particle Physics 50, 110501 (2023) 12GeV physics: Progress in Particle and Nuclear Physics 127, 103985 (2022)

Nucleon's 3D Structure

SoLID-SIDIS Programs

- > Approved SIDIS & J/Psi proposals:
 - □ E12-10-006: Single Spin Asymmetries on Transversely Polarized ³He @ 90 days, Rating A
 - □ E12-11-007: Single and Double Spin Asymmetries on Longitudinally Polarized ³He @ 35 days, Rating A
 - □ E12-11-108: Single Spin Asymmetries on Transversely Polarized Proton @ 120 days, Rating A
 - \Box E12-12-006: Near Threshold Electroproduction of J/ ψ at 11 GeV (60 days), Rating A

Prof. Haiyan Gao's plenary talk on Friday

- > Approved Run-Group:
 - ✓ (TMD) SIDIS Dihadron with Transversely Polarized 3He (E12-10-006A)
 - ✓ (TMD) SIDIS in Kaon Production with Polarized 3He & Proton (E12-11-108B/E12-10-006D)
 - ✓ (Spin) Ay with Transversely Polarized 3He (E12-11-108A/E12-10-006A)
 - ✓ (Spin) g2 n and d2 n with Transversely and Longitudinally Polarized 3He (E12-11-007A/E12-10-006E)
 - ✓ (GPD) Deep exclusive π Production with Transversely Polarized 3He (E12-10-006B)
 - ✓ (GPD) Time-Like Compton Scattering (E12-12-006A)
- > Run-Group under development (with upgrades):
 - ✓ (GPD) DVCS with polarized targets
 - ✓ (GPD) Doubly DVCS

This talk

SoLID-SIDIS(&J/Psi) Configuration

Polarized NH3 (DNP) Target

SoLID-SIDIS Study

► Di-Hadron Productions $e + N \rightarrow e' + \pi^+ + \pi^- + X$

See Anselm Vossem's Plenary talk on Monday

☐ From SoLID-SIDIS data, look for additional pion, obtain asymmetries

$$A_{UT}^{\sin(\phi_R + \phi_S)\sin\theta}(x, y, z, M_h, Q) = \frac{1}{|S_T|} \frac{\frac{8}{\pi} \int d\phi_R d\cos\theta \sin(\phi_R + \phi_S) (d\sigma^{\uparrow} - d\sigma^{\downarrow})}{\int d\phi_R d\cos\theta (d\sigma^{\uparrow} + d\sigma^{\downarrow})}$$
$$= \frac{\frac{4}{\pi} \varepsilon \int d\cos\theta F_{UT}^{\sin(\phi_R + \phi_S)}}{\int d\cos\theta (F_{UU,T} + \varepsilon F_{UU,L})}.$$

☐ From SoLID-SIDIS data, look for additional pion, obtain asymmetries

$$F_{UT}^{\sin(\phi_R + \phi_S)} = x \frac{|\mathbf{R}| \sin \theta}{M_h} h_1(x) H_1^{\triangleleft}(z, \cos \theta, M_h^2) ,$$

- $\Box \sin(\phi_R + \phi_S)$ link to Di-Hadron fragmentation function $H_1^{\not\preceq}$
- ☐ Important input to existing limited world data

SoLID-Spin Study

> Ay (E12-11-108A/E12-10-006A): $e + \vec{N}_{\rightarrow} \rightarrow e' + X$

$$e + \overrightarrow{N}_{\Longrightarrow} \rightarrow e' + X$$

- ☐ Target-Spin Asymmetry of inclusive DIS with transversely polarized nucleons
 - $A_{UT} = \frac{\sigma^{\uparrow} \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_y \sin \phi_S$
- ☐ If no zero, link to interference of one-photon and two-photon exchanges

- ☐ Correlations of the transverse nucleon spin and the transverse partonic motion
- ☐ Extract asymmetries of inclusive XS w/ transversely polarized proton (NH3) and neutron (He3) from SoLID-SIDIS data
- \square Ay from $sin(\phi_s)$ modules

SoLID-Spin Study

> g2n & d2n (E12-11-007A/E12-10-006E)

$$e + \overrightarrow{N}_{\uparrow, \Rightarrow} \rightarrow e' + X$$

See Xiaochao Zheng'Plenary talk on Monday

☐ Beam-Spin Asymmetries of inclusive DIS measurements with polarized target:

$$A_{\parallel} = \frac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow} + \sigma^{\uparrow\uparrow}} \qquad A_{\perp} = \frac{\sigma^{\downarrow\Rightarrow} - \sigma^{\uparrow\Rightarrow}}{\sigma^{\downarrow\Rightarrow} + \sigma^{\uparrow\Rightarrow}} \qquad \Delta\sigma_{\parallel,\perp} = 2\sigma_0 A_{\parallel,\perp}$$

polarized 3He target

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu E}{(E - \nu)(2E - \nu)} \left[\Delta \sigma_{\parallel} + \tan \frac{\theta}{2} \Delta \sigma_{\perp} \right],$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu^{2}}{2(E - \nu)(2E - \nu)} \left[-\Delta \sigma_{\parallel} + \frac{E + (E - \nu)\cos\theta}{(E - \nu)\sin\theta} \Delta \sigma_{\perp} \right]$$

- \square g₁ related to the polarized PDF: $g_1 = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x)$
- \square g₂ carries information of quark-gluon interaction

$$d_2(Q^2) = \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

Kaon Identification on SoLID

> Heavy Gas Cherenkov Detector (HGC)

- \clubsuit The HGC uses C_4F_8O/C_4F_{10} gas at 1.5 atm under 20 °C
- \clubsuit Designed for π/K separation from 2.2 GeV/c to 7 GeV/c
- ❖ During the offline analysis, the veto signals of the HGC can suppress pions and detect kaons (e.g. cut ≤ 5 N.P.N.)

❖ Geant4 simulation shows that the HGC can suppress pions by 1/100 at 2.5 GeV/c and by 1/400 at 7 GeV/c

Kaon Identification on SoLID

Time of Flight (TOF):

□ The TOF-Beta has been a powerful quantities to perform PID: $\beta = \frac{p}{\sqrt{p^2 + m^2c^2}}$

Y. Yu et al 2022 JINST 17 P02005

- \square Particles with same momenta & different reach detectors at diff. time: $\Delta t = t_1 t_2 \simeq \frac{Lc}{2p^2}(m_1^2 m_2^2))$
- \square Define the separation power: $n_{\sigma} = \Delta t / \sigma_{TOF}$
- \square For 5m flight-path, separate π /K up to 6 GeV/c w/ 30 ps resolution
- ☐ Tsinghua's mRPC meet requirement (R&D still needed).

Kaon Identification on SoLID

Combination of HGC and MRPC:

MRPC-TOF performs better π/K separation at lower momenta

Strategy:

- ✓ MRPC w/ 30 ps time-resolution to do π/K separation at lower momentum;
- ✓ HGC to do pi/K separation at lower momentum;

> Projection of Kaon-SIDIS:

$$e + \overrightarrow{N}_{\uparrow, \Longrightarrow} \rightarrow e' + K^{\pm} + X$$

4D binning for He3 setup

430 bins for Collins TSA (similar for K-)

4D binning for NH3 setup

120 bins for Sivers and Collins TSA separately!

Hall-A with transversely polarized neutron (He3)

COMPASS Data with transversely polarized proton

- Kaon asymmetries are same sizes or even larger as the pion asymmetries?!
- HERMES & COMPASS K+ results have opposite signs!
- SoLID Kaon data can resolve disagreement

- > Test Factorization
- ☐ Current fragmentation region is not clearly defined

- ☐ Model estimation:
 - 70% pions and 20% kaons are valid for JLab@11GeV.
 - 35% kaons are valid for JLab@22GeV

Boglione, et. al. Phys. Lett. B 766, 245 (2017)

credit to T.B. Liu, based on Boglione, et. al.

SoLID-SIDIS @ 22GeV

- 11GeV, 69days
- 22GeV, 100days

Note:

- Only statistical uncertainties
- Assume pi/K separation in full momentum ranges

SoLID-SIDIS @ 22GeV

> Projection at 22GeV:

By Tianbo Liu et. al.

• SoLID pion & kaon data @ 11GeV and 22GeV can greatly improve determination of TMDs for light quarks!

by Vlad Khachatryan et. al.

MRPC R&D at Tsinghua

- ☐ MRPC tech synergy with US-EIC (2nd) detector
- □ Awarded by US EIC generic R&D fund (\$80K per year)
- 4 mRPC at JLab, two high-rate versions to be shipped soon
- ☐ Preparing beam test at JLab w/ other SoLID detectors

2022 FermiLab MRPC & fMCP Test (Tsinghua +UIC)

Nucleon's 3D Structure

> Deep Virtual Compton Scattering (DVCS):

- ☐ Golden channel to study GPD
- □ DVCS only measures Compton Form Factors (CFFs):

$$\tau_{DVCS} \propto \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi \mp i\varepsilon} dx = P \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi} dx - i\pi H(\pm \xi,\xi,t),$$
(8 CFFs for $H, E, \widetilde{H}, \widetilde{E}$)

□ Decouple GPDs by angular modulations:

$$\mathrm{d}\sigma_{UU}^{\mathrm{I}} = \frac{-K_{\mathrm{I}}}{\mathcal{P}_{1}(\phi)\,\mathcal{P}_{2}(\phi)} \sum_{n=0}^{3} c_{n,\mathrm{unp}}^{\mathrm{I}} \cos(n\phi) \qquad \mathrm{d}\sigma_{LU}^{\mathrm{I}} = \frac{-K_{\mathrm{I}}}{\mathcal{P}_{1}(\phi)\,\mathcal{P}_{2}(\phi)} \sum_{n=1}^{2} s_{n,\mathrm{unp}}^{\mathrm{I}} \sin(n\phi),$$
$$\mathrm{d}\sigma_{UU}^{\mathrm{DVCS}} = \frac{1}{Q^{2}} \sum_{n=0}^{2} c_{n,\mathrm{unp}}^{\mathrm{DVCS}} \cos(n\phi), \qquad \mathrm{d}\sigma_{LU}^{\mathrm{DVCS}} = \frac{1}{Q^{2}} s_{1,\mathrm{unp}}^{\mathrm{DVCS}} \sin\phi,$$

Polarization	Asymmetries	CFFs
Longitudinal Beam	A_{LU}	$Im\{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}, \mathcal{E}_{p}\}$ $Im\{\mathcal{H}_{n}, \widetilde{\mathcal{H}}_{p}, \mathcal{E}_{n}\}$
Longitudinal Target	$A_{U\!L}$	$Im\{\mathcal{H}_{_{p}},\widetilde{\mathcal{H}}_{_{p}}\} \ Im\{\mathcal{H}_{_{n}},\mathcal{E}_{_{n}},\widetilde{\mathcal{E}}_{_{n}}\}$
Long. Beam + Long. Target	A_{LL}	$\mathcal{R}e\{\mathcal{H}_{_{p}},\widetilde{\mathcal{H}}_{_{p}}\}$ $\mathcal{R}e\{\mathcal{H}_{_{n}},\mathcal{E}_{_{n}},\widetilde{\mathcal{E}}_{_{n}}\}$
Transverse Target	A_{UT}	$Im\{\mathcal{H}_{_{p}},\mathcal{E}_{_{p}}\}$ $Im\{\mathcal{H}_{_{n}},\mathcal{E}_{_{n}}\}$
Long. Beam +Trans.Targt	A_{LT}	$\mathcal{R}e\{\mathcal{H}_{p},\mathcal{E}_{p}\}$ $\mathcal{R}e\{\mathcal{H}_{n},\mathcal{E}_{n}\}$

> Three additional exclusive processes > Crucial to fully extract GPDs

Timelike Compton

- ✓ Inverse of the space-like DVCS
 - ✓ Extract the real part of CFFs
 - ✓ Complimental to DVCS
- ✓ New experiments: CLAS12, SoLID

Deep Virtual Meson

$$e + N \rightarrow e' + N' + \pi^{0,\pm} (K^{0,\pm}, \eta, \rho, \omega, ...)$$

- ✓ Vector mesons sensitive to H, E.
- ✓ Pseudoscalar mesons sensitive to \widetilde{H} and \widetilde{E} .
- ✓ neutron + pseudoscalar uniquely sensitive to \tilde{E}
- ✓ sensitive to chiral-odd GPDs $(H_T, E_T, \widetilde{H}_T, \widetilde{E}_T)$
- ✓ New experiments: CLAS12, SoLID, Hall-C

Double-DVCS:

- ✓ Lepton pairs in the final states
- Access GPDs beyond the $x=\xi$ limit
 - ✓ New experiments: NONE

☐ Much less been done!

> Current SIDIS/Jpsi Setup for GPDs:

- Electron resolutions:
 - $\delta P/P \sim 2\%$, $\delta \theta \sim 0.6 mrad$, $\delta \Phi \sim 5 mrad$ $\delta Vertex \sim 0.5 cm$
- Photon determined by ECAL:

$$\delta x_EC = 1 cm$$
,
 $\delta y_EC = 1 cm$,
 $\delta E/E = 5\%/sqrt(E)$

Proton determined by TOF

23/32

GPD Study on SoLID

 $Q^2=4 \text{ GeV}^2 -t=0.3 \text{ GeV}^2$

Twist-4

Bjorken x

Twist-

- $e + \vec{n} \rightarrow e' + p + \pi^-$ > SoLID-DVMP:
 - □ Reduced high-twist effect in DVCS Asymmetries
 - ☐ Asymmetry (no L/T separation):

$$A(\phi, \phi_s) = \frac{d^3 \sigma_{UT}(\phi, \phi_s)}{d^2 \sigma_{UU}(\phi)} = -\sum_k A_{UT}^{\sin(\mu\phi + \lambda\phi_s)_k} \sin(\mu\phi + \lambda\phi_s)_k$$

☐ Analyze angular modules to decouple LT contribution

HERMES Data:

- \checkmark π^+ , 27.6 GeV, trans ¹H, w/o L/T separation
- \checkmark $\langle x_B \rangle = 0.13, \langle Q2 \rangle \sim 2.4 \text{ GeV}^2,$
- ✓ Consistent with GPD models based on the E dominance

S. Goloskokov et. al. PLB 682(2010)345 Eur Phys.J. C65(2010)137

$$A_{UT}^{\sin(\phi_S)} \sim \text{Im}[M_{0+++}^* M_{0-0+} - M_{0-++}^* M_{0+0+}]$$
 helicities: [pion, neutron, photon, proton]
$$\mathcal{M}_{0-,++} = e_0 \sqrt{1 - \xi^2} \int \mathrm{d}x \mathcal{H}_{0-,++} H_T,$$

$$\mathcal{M}_{0+,\pm+} = -e_0 \frac{\sqrt{t_{\min} - t}}{4m} \int \mathrm{d}x \mathcal{H}_{0-,++} \bar{E}_T.$$

- > Solid-DVMP: $e + \vec{n} \rightarrow e' + p + \pi^-$
 - □ Reconstruct DVMP events via Missing
 Mass from SIDIS data
 - □ Extract the first neutron DVMP asymmetries

SoLID Projected Data:

- □ π⁻, 11.0 GeV, trans ³He, w/o L/T separation
- □ Q2>4 GeV², large t coverage
- ☐ Simultaneous extraction of all angular moments
- ☐ Precision improved x10+
- ☐ Pioneer study before EIC

- > Solid-TCS: $\gamma + N \rightarrow N + e^+ + e^-$
- ☐ Time-Like Compton Scattering (TCS):
 - ✓ Different angular moments for TCS & BH Interf.-terms

$$\sigma_{INT}^{TCS,unpol} \propto cos\phi Re\widetilde{M}^{--}, \sigma_{INT}^{TCS,cir-pol} \propto sin\phi Im\widetilde{M}^{--}$$

$$\tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \eta}{1 + \eta} \left[F_1 \mathcal{H}_1 - \eta (F_1 + F_2) \tilde{\mathcal{H}}_1 - \frac{t}{4M^2} F_2 \mathcal{E}_1 \right]$$

- □ SoLID-TCS: Parallel data taking with J/Psi
 - ✓ Unpolarized LH2 target; Indirect photon-production
 - \checkmark Extract cosφ and sinφ modules

> Solid-DVCS:
$$e + \vec{n} \rightarrow e' + n + \gamma$$

✓ Acceptance

✓ Integrated Rate:

E_0	$8.8~{ m GeV}$	$11 \; \mathrm{GeV}$			
Single Rates (Hz)					
e- (FAEC)	64.78	36.17			
e- (LAEC)	2.57	1.70			
γ (FAEC)	45.37	40.54			
$\gamma \; ({ m LAEC})$	31.05	28.83			
Coincidence Rates (Hz)					
$e-(FAEC)+\gamma(FAEC+LAEC)$	36.06	20.50			
$e-(LAEC)+\gamma(FAEC+LAEC)$	1.46	1.00			

✓ DVCS Asymmetries

$$A_{BS} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \frac{1}{P_{e}}$$

$$A_{TS} = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \frac{1}{f P_{T} P_{n}},$$

$$A_{DS} = \frac{(N^{+\uparrow} + N^{-\downarrow}) - (N^{+\downarrow} + N^{-\uparrow})}{N^{+\uparrow} + N^{+\downarrow} + N^{-\uparrow} + N^{-\downarrow}} \frac{1}{f P_{T} P_{n} P_{e}},$$

Missing Mass Reconstruction:

> SoLID-DVCS:

$$e + \vec{n} \rightarrow e' + n + \gamma$$

✓ Asymmetry Projection:

- Two transversely polarized direction
- 5-Q2-bins:
- BSA, TSAx5x2, DSAx2 → 25 such kind of plots

21 days on E0=8.8GeV, 48 days on E0=11GeV

ECAL for SoLID-DVCS

- > ECAL Supermodules (Shangdong Univ. & Tsinghua)
 - □ SoLID Shashlyk ECal for e/pi seperation
 - □ Modules shipped from SDU to Tsinghua in late 2023
 - ☐ Assemble super-modules in summer 2024
 - □ To be send to JLab in late 2025 for beam testing

ECAL for SoLID-DVCS

- > Upgrade to PbWO4 ECAL?
- □ SoLID Shashlyk ECal are not optimized for photon detection
- □ Possible upgrade to PbWO4 ECal (reuse of ECAL from the NPS experiments or eta-factory (Hall-D)

EM Calorimeter (forwardangle) EM Calorimeter (large angle) GEM Scint Collimator Collimator Collimator Collimator Collimator Cherenkov Cherenkov

ECAL for eta factory@GLUEX

SoLID ECal:

- $\delta E/E \sim 5\%/sqrt(E)$
- Position~10mm

NPS ECal:

- $\delta E/E \sim 1.3\%/sqrt(E)$
- Position~2.5mm

Hall-C DVCS experiments with NPS calorimeter (See Yaopeng Zhang'talk this afternoon at 2pm)

- > SoLID-DDVCS: $e+N\rightarrow e'+N+l^++l^-$
 - Doubly DVCS explores wide off-axis kinematic region of GPDs, beyond DVCS and TCS.

- The exclusive reaction has small cross-section
- · Needs high luminosity and large acceptance.
- SoLID is likely the best place to do DDVCS

S. Zhao et al. EPJ A 57 (2021) 240

$$\xi' = \frac{Q^2 - Q'^2 + t/2}{2Q^2/x_B - Q^2 - Q'^2 + t}$$

$$\xi = \frac{Q^2 + Q'^2}{2Q^2/x_B - Q^2 - Q'^2 + t}$$

- > SoLID-DDVCS: $e+N \rightarrow e'+N+l^++l^-$
 - □ Detector upgrade needed to measure muons
 - ✓ DDVCS with J/Psi +muon detectors → New LOI submitted to PAC51 in 2023

Summary

- \succ SoLID: large acceptance + very high luminosity \rightarrow full exploitation of JLab12 potential
 - ✓ pushing the limit of the luminosity frontier
 - ✓ highlighted in 2023 NSAC LRP and facility review
- > Solid SIDIS with long. and trans. polarized protons and neutrons (Haiyan's talk on Friday)
- > Several run-group have been approved to do spin, TMD and GPD study
- > Several new run-group are under developments for DVCS and Doubly-DVCS measurements.

Backup Slides

> SoLID Acceptance for Kaons:

SoLID-SIDIS with He3

SoLID-SIDIS Coincident Rates (Hz)					
Polarized Target	³ He ("n")		NH ₃ ("p")		
Beam Energy	$8.8~{ m GeV}$	$11 \; \mathrm{GeV}$	$8.8~{ m GeV}$	11 GeV	
$e-(FAEC+LAEC)+K^+(FAEC)$	359.3	575.6	4.9	10.4	
$e-(LAEC+LAEC)+K^-(FAEC)$	83.2	144.1	0.93	2.7	
$e-(FAEC+LAEC)+\pi^+(FAEC)$	1555.0	2185.9	20.3	37.4	
$e-(LAEC+LAEC)+\pi^-(FAEC)$	1012.5	1449.6	10.2	20.7	

MRPC R&D at Tsinghua

- ☐ Multi-layer Resistive Plate Chambers (MRPC) by Y. Wang @ Tsinghua
 - ✓ Low-resistivity glass plates, gas (95% F134a + 5% iso-butane), HV(~12kV)
 - ✓ High rates (>30kHz/cm²), radiation-hard, magnet safe
 - ✓ Some spatial resolution (by strip pitch, 0.5cm~1.0cm)
 - ✓ Low cost, easy manufacturing,
 - ✓ Used by ALICE, STAR, CBM, CEE, NICA, etc.

□ Developed for SoLID's high-rate & -background environment

- ✓ Low resistance glass $(10^{10}\Omega \cdot cm)$, best quality)
- ✓ 32-gaps (4 stacks), 400um thin glasses
- ✓ 104um gas-gap + waveform-sampling → 20ps & 95% efficiency at 15kHz
- ✓ 128um gas-gap + ToT method → 20ps at 15kHz
- ✓ Small sizes & not sealed yet
 - Y. Yu et al 2022 JINST 17 P02005
 - Y. Yu et al 2020 JINST 15 C01049

SoLID-SIDIS Study

Unpolarized Cross-Section off He3:

 \square Projected π^+ unpolarized cross section errors with and without azimuthal terms. ~2000 bins in 5D

$$\frac{d\sigma}{dx_{bj}dydz_hdP_{hT}^2d\phi_h} \equiv \mathcal{F}_{\mathcal{U}\mathcal{U}} = \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{A}} + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{B}}\cos(\phi_h) + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{C}}\cos(2\phi_h)$$

☐ A naive probe for the azimuthal modulation effect

$$A(1 - B \cdot \cos(\varphi_h) - C \cdot \cos(2\varphi_h))$$

by Shuo Jia, et. al.

SoLID-SIDIS at 22GeV

➤ Larger Phase-Space

Back dots→11GeV Color dots→22GeV

SoLID-SIDIS @ 22GeV

□8 Leading-Twist GPDs:

Chiral Even $H^{q/g}$, $E^{q/g}$, $\widetilde{H}^{q/g}$, $\widetilde{E}^{q/g}$

Chiral Odd $H_T^{q/g}, E_T^{q/g}, \widetilde{H}_T^{q/g}, \widetilde{E}_T^{q/g}$

		Quark Polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	υ	Н		$2\widetilde{H}_T + E_T$
larizatior	L		\widetilde{H}	\widetilde{E}_T
Nucleon Polarization	Т	E	\widetilde{E}	H_T, \widetilde{H}_T

□ Access parton distributions in 3D

X. Ji, PRL 78, 610 (1997)

M. Diehl, Physics Reports 388 (2003) 41–277,

Belitsky, Radyushkin, Physics Reports 418 (2005) 1–387

□ Connect to FF & PDFs: e.g.

$$\int_{-1}^{1} dx H^{q}(x, \xi, t) = F_{1}^{q}(t)$$

$$\int_{-1}^{1} dx E^{q}(x, \xi, t) = F_{2}^{q}(t)$$

Dirac&Paul

Form Factors

$$\int_{-1}^{1} dx \tilde{H}^{q}(x,\xi,t) = G_{A}^{q}(t)$$

$$\int_{-1}^{1} dx \tilde{E}^{q}(x,\xi,t) = G_{P}^{q}(t)$$

Axial&Pseudoscaler

Form Factors

$$H^{q}(x,0,0) = q(x), x > 0$$

 $\widetilde{H}^{q}(x,0,0) = \Delta q(x), x > 0$

PDFs

- ☐ How to access Angular Momenta?
- ✓ Ji's Sum Rule (X. Ji, PRL 78, 610 (1997)

$$J_{q/g} = \lim_{t,\xi\to 0} \frac{1}{2} \int x dx \left[\mathbf{H}^{q/g}(x,\xi,t) + \mathbf{E}^{q/g}(x,\xi,t) \right]$$

Generalized Parton Distributions (GPD)

> Current Status:

□ Exploration stage (CLAS, Hall-A, COMPASS, HERMES, ZEUS, H1)

Guidal, Moutarde Vanderhaeghen, Rep. Prog. Phys. 76 (2013) d' Hose, et. al., Eur. Phys. J. A (2016) 52: 151 X. Ji, National Science Review, 213-223 (2017)

☐ More data needed!

□ Global Fits

Blue: fit with modle-constrain, Moutarde et. al. EPJ (2018) Gray: unbias fit by PARTONS Collaboration, EPJ (2019)

> Jlab12GeV DVCS Experiments:

- \square Need multiple observables to decouple 8 CFFs, \rightarrow XS, BSA, TSA, DSA
- \Box DVCS not directly sensitive to flavor \rightarrow proton & neutron needed for u & d
- □ 3D → wide kinematic-coverage + high rate

Approved 12GeV DVCS experiments:

- E12-16-010B (Hall-B): unpol. proton, XS
- E12-11-003 (Hall-B): unpol. Deuteron, BSA
- E12-06-119 (Hall-B): long-pol proton, BSA, TSA,
- C12-12-010 (Hall-B): *conditional approved*, trans. pol. Proton, TSA,BSA
- C12-15-004 (Hall-B): conditional approved, long. pol. Deuteron, TSA, BSA
- E12-06-114 (Hall-A&C): unpol. proton, XS & BSA, limited coverage
- E12-13-010 (Hall-C): unpol. proton, XS,
- E12-15-001 (Hall-C): proton, XS
- LOI: nDVCS w/ TDIS setup (Hall-A), tagged neutron, XS
- ❖ SoLID (SIDIS configuration) will provide:
 - * DVCS asymmetries w/ polarized beam & target data
 - * DVCS neutron data (Deuteron or He3)

> Solid-DVMP: $e + \vec{n} \rightarrow e' + p + \pi^-$

- □ DVMP advantages:
 - ✓ Direct probe of quark flavor
 - ✓ Pseudoscaler mesons sensitive to \widetilde{H} and \widetilde{E} (uniquely w/ neutron)
 - ✓ Sensitive to transverse GPDs $(H_T, E_T, \widetilde{H}_T, \widetilde{E}_T)$

□ DVMP disadvantages:

- ✓ Usually requires $Q^2 > 10 \text{ GeV}^2$ for factorization
- ✓ Higher twist contaminations
- ✓ Long. photons to link to GPD (LT separation)

$$2\pi \frac{d^2\sigma}{dt d\phi} = \epsilon \frac{d\sigma_{\rm L}}{dt} + \frac{d\sigma_{\rm T}}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{\rm LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{\rm TT}}{dt} \cos2\phi$$

- DVMP w/ asymmetries: Belitsky & Müller PLB 513(2001)349, CIPANP 2003).
 - ✓ A_L^{\perp} displays factorization even at only Q²~2-4 GeV²:

$$A_L^{\perp} = \frac{\sqrt{-t'}}{m_p} \frac{\xi \sqrt{1 - \xi^2} \operatorname{Im}(\tilde{E}^* \tilde{H})}{(1 - \xi^2)\tilde{H}^2 - \frac{t\xi^2}{4m_p} \tilde{E}^2 - 2\xi^2 \operatorname{Re}(\tilde{E}^* \tilde{H})}.$$

