

2025/09/19 26th International Symposium on Spin Physics

Central rapidity jet transverse single spin asymmetry measurements in proton-proton collisions with sPHENIX

Genki Nukazuka (RIKEN) on behalf of the sPHENIX Collaboration

Transverse Single Spin Asymmetry

Large left-right asymmetry in $p^{\uparrow} + p \rightarrow \pi + X$ has been observed with different \sqrt{s} .

$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

Experiment: up to 30%

Leading order calc. in pQCD: ~0.01%

Transverse Single Spin Asymmetry

Transverse-momentum dependent (TMD) distribution functions and fragmentation functions

Sivers mechanism

Correlations of nucleon transverse spin and parton transverse momentum in the nucleon.

Collins mechanism

Transversity

Collins fragmentation function
Spin dependent fragmentation
function of a transversely polarized
parton into a final-state hadron

		Spin state of nucleon			
		No pol.	Long.	Trans.	
Spin state of quark	No pol.	Number density		Sivers	
	Long.		Helicity	Worm-Gear	
	Trans.	Boer-Mulders	Worm-Gear	Transversity	
				Pretzelosity	

Transverse Single Spin Asymmetry

Transverse-momentum dependent (TMD) distribution functions and fragmentation functions

Sivers mechanism

Correlations of nucleon transverse spin and parton transverse momentum in the nucleon.

Collins mechanism

Transversity

Collins fragmentation function
Spin dependent fragmentation
function of a transversely polarized
parton into a final-state hadron

Multi-parton correlation in twist-3 collinear factorization

Twist-3 Quark-gluon-quark and Tri-gluon correlations in the initial-state or in the final-state

The 2 factorizations are related and equivalent in the overlapping kinematics

Relativistic Heavy Ion Collider

World's first and only polarized proton+proton collider

· Provide polarized proton+proton collisions up to $\sqrt{s} = 510 \ \mathrm{GeV}$

High (50-60%) transverse polarization and frequent spin flips

- Siberian snakes minimize depolarizing effect
- Spin rotators allow changing from vertical to radial or longitudinal polarization.
- proton-Carbon and hydrogen gas jet polarimeters measure the polarization.

sPHENIX Collaboration

- State-of-the-Art Jet Detector at RHIC
- Study of quark-gluon-plasma and Cold-QCD
- About 400 scientists and students from 14 countries
- Full azimuthal and $|\eta| < 1.1$ acceptance for collisions in ±10 cm

Main Physics Programs at sPHENIX

Run 2024

2023 🗸

• AuAu, $\sqrt{s_{\rm NN}} = 200~{\rm GeV}$, commissioning

2024 🗸

- $p^{\uparrow}p^{\uparrow}$, $\sqrt{s}=200$ GeV, commissioning and data taking
- AuAu, $\sqrt{s_{\rm NN}} = 200~{\rm GeV}$, commissioning

2025

- AuAu, $\sqrt{s_{\mathrm{NN}}} = 200~\mathrm{GeV}$, data taking
- additional measurement under discussion

Calorimeter data: 107 pb⁻¹
 0 mrad crossing angle
 More than twice luminosity goal achieved

Run 2024, Dijet event display

Dijet event display and energy distributions of the calorimeters. We could make them at the beginning of the physics data taking.

Inclusive jet A_N

Powerful probe for initial-state partonic interactions and insensitive to final-state effect.

Transverse single-spin asymmetry (TSSA):

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_N \sin \phi = \frac{1}{P} \varepsilon_N \sin \phi$$

Inclusive jet A_N

Powerful probe for initial-state partonic interactions and insensitive to final-state effect.

Transverse single-spin asymmetry (TSSA):

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_N \sin \phi = \frac{1}{P} \varepsilon_N \sin \phi$$

TSSA of inclusive jet:

Collinear twist-3 quark-gluon correlation inside transversely polarized proton (Efremov-Teryaev-Qiu-Sterman function) can be studied, which is related to Sivers function:

$$T_{q,F}(x,x) = -\left[d^2k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp,q}(x,k_{\perp}^2) \right]_{\text{SIDIS}}$$

Inclusive jet A_N becomes more sensitive to the gluon Sivers function in -0.04 the low p_T region as the contribution of hard-scattered gluons is large.

RHIC kinematics

Inclusive jet $A_N(p^{\uparrow} + p \rightarrow \text{jet} + X)$

Reconstruction, Analysis (Kinematics, event/spin parameters) Jet energy scale & Jet energy resolution calibration Unfolding to truth jets Asymmetry extraction Systematics studies

Electromagnetic calorimeter

- Tungsten powder + scintillating fibers
- Compact design, small segmentation ($\Delta \eta \times \Delta \phi = 0.024 \times 0.024$)

Electromagnetic calorimeter

- Tungsten powder + scintillating fibers
- Compact design, small segmentation ($\Delta \eta \times \Delta \phi = 0.024 \times 0.024$)

counts / [2 MeV

Neutral meson transverse single spin asymmetries and prospects for the D⁰ transverse single spin asymmetry in polarized proton collisions with sPHENIX Devon Loomis

10:20 - 10:50

Electromagnetic calorimeter

- Tungsten powder + scintillating fibers
- Compact design, small segmentation ($\Delta \eta \times \Delta \phi = 0.024 \times 0.024$)

Hadronic calorimeter

- Inside of the magnet: aluminum and scintillating tiles
- Outside of the magnet: steel + scintillating tiles
- Measurements before multiple scattering of hadron shower by the cryostat for the magnet is possible.
- HCal enables unbiased jet triggering

Hcal installation

Jet measurement

- A good probe to study the initial-state as insensitive to the final-state effect.
- Anti-k_T algorithm with the cone radius of 0.4 is used.
- Jet reconstruction using calorimeter data shows very good performance.

EMcal

Hcal

Jet measurement

- A good probe to study the initial-state as insensitive to the final-state effect.
- Anti-k_T algorithm with the cone radius of 0.4 is used.
- Jet reconstruction using calorimeter data shows very good performance.

EMcal

Fully unfolded jet cross-section measurement with pp data. Good agreement between our measurement and the theoritical caclulation was confirmed. We could reach up to 70 GeV. Only 15% of data was used.

Inclusive jet $A_N (p^{\uparrow} + p \rightarrow jet + X)$

Reconstruction, Analysis (Kinematics, event/spin parameters) Jet energy scale & Jet energy resolution calibration Unfolding to truth jets Asymmetry extraction Systematics studies

- Reconstruction: Anti-k_T jet with R = 0.4 using calorimeter data
- Trigger: Minimum bias North & South trigger fired
- Trigger: At least one of jet triggers (8, 10, 12 GeV) fired
- Event: $|z_{\text{vtx}}| < 60 \text{ cm}$
- Event: Beam polarization > 30%
- Jet: $|\eta_{\text{iet}}| < 1.1 R = 0.7$
- **Jet**: Calorimeter energy fraction

 Jets with too much energy concentration to EMCal/iHcal/oHcal are not used.

Inclusive jet $A_N(p^{\uparrow} + p \rightarrow \text{jet} + X)$

Reconstruction, Analysis (Kinematics, event/spin parameters)

Jet energy scale & Jet energy resolution calibration

Unfolding to truth jets

Asymmetry extraction

Systematics studies

- Reconstruction: Anti- k_T jet with R=0.4 using calorimeter data
- Trigger: Minimum bias North & South trigger fired
- Trigger: At least one of jet triggers (8, 10, 12 GeV) fired
- Event: $|z_{\text{vtx}}| < 60 \text{ cm}$
- Event: Beam polarization > 30%
- Jet: $|\eta_{\text{jet}}| < 1.1 R = 0.7$
- Jet: Calorimeter energy fraction

Jets with too much energy concentration to EMCal/iHcal/oHcal are not used.

Jet trigger performance

Inclusive jet $A_N(p^{\uparrow} + p \rightarrow \text{jet} + X)$

Reconstruction, Analysis (Kinematics, event/spin parameters)

Jet energy scale & Jet energy resolution calibration

Unfolding to truth jets

Asymmetry extraction

Systematics studies

- **Reconstruction**: Anti- k_T jet with R = 0.4 using calorimeter data
- Trigger: Minimum bias North & South trigger fired
- Trigger: At least one of jet triggers (8, 10, 12 GeV) fired
- Event: $|z_{\text{vtx}}| < 60 \text{ cm}$
- Event: Beam polarization > 30%
- Jet: $|\eta_{\text{iet}}| < 1.1 R = 0.7$
- Jet: Calorimeter energy fraction

Jets with too much energy concentration to EMCal/iHcal/oHcal are not used.

Jet trigger performance

Inclusive jet $A_N (p^{\uparrow} + p \rightarrow jet + X)$

Reconstruction, Analysis (Kinematics, event/spin parameters) Jet energy scale & Jet energy resolution calibration Unfolding to truth jets Asymmetry extraction Systematics studies

sPHENIX Simulation PYTHIA8 p+p√s = 200 GeV

Response matrix ($p_{\rm T}^{\rm reco}$ vs $p_{\rm T}^{\rm truth}$) used in the unfolding correction.

The full/half closure tests confirmed that unfolding correction reproduce the input truth spectrum within statistical uncertainties.

Conference note:

https://www.sphenix.bnl.gov/PublicResults/sPH-CONF-JET-2025-03

Inclusive jet A_N: Asymmetry extraction

Transverse single spin asymmetry for the inclusive jet production

Inclusive jet A_N: Asymmetry extraction

Transverse single spin asymmetry for the inclusive jet production

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_N \sin \phi = \frac{1}{P} \varepsilon_N \sin \phi$$

Relative luminosity formula

Difference of #jet and #jet at the same φ with opposite beam spin Correction of the luminosity difference depending on spin polarity is applied.

$$\varepsilon_{N} \equiv \frac{N^{\uparrow}(\phi) - RN^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + RN^{\downarrow}(\phi)}$$

Square root formula

Combinations of #jet with (ϕ or ϕ +180°) and (up or down) polarization form the asymmetry.

Both the luminosity difference and the detector acceptance effect are canceled.

$$\varepsilon_{N} \equiv \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}$$

Preliminary results are almost there.
Stay tuned!

Summary

- Inclusive jet A_N: Powerful tool to study collinear twist-3 quark-gluon correlation function.
- The sPHENIX detector has been operated since 2023.
- The detector commissioning in 2024 was sucessfully completed.
- Transversely polarized proton-proton measurement was performed in 2024.
- First jet measurement at sPHENIX
 - The jet reconstruction shows great performance. The preliminary cross-section of inclusive jet production well agree with the theoritical calculation.
 - Preliminary asymmetry measurement is coming soon.

Visit us: https://www.sphenix.bnl.gov/PublicResults

53. Neutral meson transverse single spin asymmetries and prospects for the D0 transverse single spin asymmetry in polarized proton collisions with sPHENIX

Devon Loomis

3 9/24/25, 10:20 AM

O 9/24/25, 9:40 AM

Three-dimensional struc..

Oral 3-dimensional structure ...

Backup slides

Inclusive jet A_N

Powerful probe for initial-state partonic interactions insensitive to final-state effect.

Transverse single-spin asymmetry (TSSA):

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_N \sin \phi = \frac{1}{P} \varepsilon_N \sin \phi$$

