Transverse Single Spin Asymmetry of Electromagnetic Jets at Forward Rapidity in $p^{\uparrow} + p$ Collisions at STAR

Weibin Zhang for the STAR Collaboration

UC Riverside

September 24, 2025

26th International Symposium on Spin Physics Qingdao, China

Proton Spin Puzzles

Too Small Puzzle

Too Large Puzzle

$$\frac{1}{2} = \sum_{q} S_q + \sum_{g} S_g + \sum_{q} L_q + \sum_{g} L_g$$

 $\mathsf{TSSA}_{\mathsf{exp}} >> \mathsf{TSSA}_{\mathsf{theory}}$

Transverse Single Spin Asymmetry (TSSA/A_N)

$$\mathsf{A}_\mathsf{N} = \frac{\sigma_\mathsf{L} - \sigma_\mathsf{R}}{\sigma_\mathsf{L} + \sigma_\mathsf{R}} = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow}$$

Motivation

Aidala et al., Rev. Mod. Phys. 85, 655 (2013)

STAR Collaboration, PRD 103, 092009 (2021)

- Perturbative-QCD predicts small contributions from hard scattering: $A_{\rm N} \sim m_q/p_{\rm T} \sim O(10^{-4})$
- Large A_N observed $\sim {\it O}(10^{-1})$
- Compels inclusion of TMD/twist-3 mechanisms and diffractive effects beyond collinear pQCD

Theoretical Explanation: TMD $(p_T << Q)$

Initial State Effect Sivers mechanism

Final State Effect Collins mechanism

Spin-momentum coupling between the proton's \vec{S}_{\perp} and the \vec{k}_{\perp} of its unpolarized partons

Correlation between a quark's \vec{S}_{\perp} and the \vec{k}_{\perp} of unpolarized hadrons produced in its fragmentation

Theoretical Explanation: Twist-3 $(p_T \sim Q)$

- Incorporates quark–gluon–quark correlations in the parton distribution or in fragmentation
- No explicit parton k_T; instead, multi-parton correlators encode spin-momentum correlations
- Qiu–Sterman function $T_F(x,x)$ (ETQS matrix element) in the initial state, and analogous $\hat{H}(z)$ -type functions in fragmentation
- ullet A_N scales as $1/p_T$, consistent with observed trends at high p_T

$$A_{N} \sim \frac{T_{F}(x,x) \otimes H}{f(x) \otimes \hat{H}}$$

TSSA in Electromagnetic (EM) Jets

STAR Collaboration, PRD 103, 092009 (2021)

- Isolated π^0 has a larger A_N than non-isolated π^0
- EM-jets: jets with only photons
- Explore the potential source of large A_N
 - Diffractive processes
- Characterize A_N in terms of EM-jet p_T , energy and photon multiplicities

The STAR Experiment at RHIC

The STAR Detector

Inclusive and Diffractive Processes

Inclusive

Rapidity Gap

Single Diffractive

EM-jets at FMS

- One EM-jet at FMS
- Veto on east BBC

- One EM-jet at FMS
- Veto on east BBC
- One proton at east RP

Dataset and Event Selection

Dataset

- 2015: pp collisions at $\sqrt{s}=200$ GeV, P = 57%
- 2017: pp collisions at $\sqrt{s} = 510$ GeV, P = 60%

Event Selection

- $|z| \le 80 \text{ cm}$
- Photon: *E* > 1 GeV
- EM-jet: Anti- k_T clustering, R= 0.7, $p_T>2$ GeV, 2.8 $<\eta<$ 3.8
- p_T is corrected for underlying event using off-axis cone method [STAR Collaboration, PRD, 100, 052005 (2019)]
- Energy is unfolded to particle level

A_N Extraction

$$\mathsf{A}_{\mathsf{raw}} = \mathsf{A}_{\mathsf{N}} \times \mathsf{P} \times \mathsf{cos}(\phi) \approx \frac{\sqrt{\mathit{N}_{\phi}^{\uparrow} \mathit{N}_{\phi+\pi}^{\downarrow}} - \sqrt{\mathit{N}_{\phi}^{\downarrow} \mathit{N}_{\phi+\pi}^{\uparrow}}}{\sqrt{\mathit{N}_{\phi}^{\uparrow} \mathit{N}_{\phi+\pi}^{\downarrow}} + \sqrt{\mathit{N}_{\phi}^{\downarrow} \mathit{N}_{\phi+\pi}^{\uparrow}}}$$

 $P = beam polarization \quad \phi = azimuthal angle$

Inclusive: A_N vs p_T at pp $\sqrt{s} = 510$ GeV

Inclusive: A_N vs x_F at pp $\sqrt{s} = 510$ GeV

- A_N increases with x_F (except the last x_F bin)
- A_N decreases with increasing photon multiplicity

Diffractive: A_N vs x_F at pp $\sqrt{s} = 510$ GeV

Single Diffractive

A_N vs x_F at pp $\sqrt{s} = 510$ GeV

- Rapidity gap event and single diffractive process exhibit similar A_N to inclusive process
- In all three processes, EM-jets with large photon multiplicity (\geq 3) display very small A_N

Inclusive: pp $\sqrt{s} = 510 \text{ GeV} \text{ vs } 200 \text{ GeV}$

- Inclusive process shows similar A_N at $\sqrt{s}=510$ GeV and 200 GeV in the overlapping x_F region, while the 500 GeV data extend coverage to lower x_F
- At both $\sqrt{s} = 510 \text{ GeV}$ and 200 GeV, A_N primarily arises from low photon multiplicity EM-jets

Diffractive: pp $\sqrt{s} = 510 \text{ GeV} \text{ vs } 200 \text{ GeV}$

Single Diffractive

Summary

- A_N is extracted for inclusive and diffractive processes at $\sqrt{s} = 200$ and $510~{\rm GeV}$
- A_N increases with EM-jet's energy and x_F, varies with its p_T and decreases with its photon multiplicity
- Similar A_N is observed for all three processes at $\sqrt{s}=200$ GeV and 510 GeV
- Diffractive processes alone cannot account for the large A_N observed in inclusive events.