

Measurement of transverse polarization of $\Lambda(\overline{\Lambda})$ within jet in pp collisions at 200 GeV

Taoya Gao(高涛亚)

Shandong University For the STAR Collaboration Sep. 24, 2025

Λ spontaneous polarization puzzle

G.Bunce et al. PRL 36, 1113 (1976)

- Large transverse polarization of Λ hyperon in unpolarized hadron scatterings, along the normal to the production plane, first observed in 1976
- Λ polarization was sensitive to p_T and x_F , almost no energy dependence
- $\overline{\Lambda}$ polarization was consistent with 0

A.D. Panagiotou, Int.J.Mod.Phys.A 5, 1197 (1990)

$$\vec{S} = \frac{\vec{p}_{\text{beam}} \times \vec{p}_{\Lambda}}{|\vec{p}_{\text{beam}} \times \vec{p}_{\Lambda}|}$$

Possible sources

Initial state

Hard scattering

Final state

Boer and Mulders, PRD 57, 5780 (1998)

- Boer-Mulders function
- Describing a polarized parton in an unpolarized proton

Kane, Pumplin & Repko, PRL 41, 1689 (1978)

 pQCD calculation predicted ~0 polarization from hard-scattering Mulders, Tangerman, Nucl. Phys. B 461, 197 (1996)

- Polarizing fragmentation function (PFF)
- Describing transverse polarized hadrons from unpolarized quark

(Focus of this talk)

Polarizing fragmentation function

TMD FF Quark polarization

U L T

U D_1 H_1^{\perp} U D_1 H_{1L}^{\perp} T D_{1T}^{\perp} G_{1T}^{\perp} H_1, H_{1T}^{\perp}

- Polarizing Fragmentation Function (PFF)
 - ✓ Describing fragmentation of unpolarized quarks into polarized hadrons

- Experimental test
 - ✓ Measuring Λ polarization within a jet in different processes, such as: e^+e^- , pp, ep

Boer et al, PLB 671, 91-98 (2008) Kang, Lee, Zhao, PLB 809, 135756 (2020)

Λ polarization in e^+e^- annihilation

- At LEP ($\sqrt{s} = 90 \text{ GeV}$)
 - ALEPH $P_T^{\Lambda, \bar{\Lambda}} = 0.016 \pm 0.007$ ALEPH, PLB 374, 319 (1996)
 - OPAL $P_T^{\Lambda} = 0.019 \pm 0.014 \ (p_T > 0.3 \ \text{GeV/c})$ OPAL, EPJC 2, 49 (1998)
- At Belle ($\sqrt{s} = 10.6 \text{ GeV}$)
 - Significant polarization with z dependence
 - Using π , K mesons tag quark flavor
- Extraction of polarizing Fragmentation Function (PFF)

Callos, Kang, Terry, PRD 102, 096007 (2020)

D'Alesio, Murgia, Zaccheddu, PRD 102, 054001 (2020)

Chen, Liang, Pan, Song, Wei, PLB 816, 136217 (2021)

• Gluon PFF are not constrained by e^+e^- data

What can we do at RHIC?

- Polarizing Fragmentation Function (PFF) can be accessed by transverse polarization of Λ-in-jet in pp collision

 Boer et al, PLB 671, 91-98 (2008)
 - ✓ Cover a wide range of jet p_T : 5~50 GeV/c
 - ✓ Constraints for gluon PFF
 - ✓ Test universality of PFF
- Λ polarization can be measured through angular distribution of its daughter particle

$$\frac{dN}{d\cos\theta^*} \propto A_{(\cos\theta^*)} (1 + \alpha P \cos\theta^*)$$

 $A(\cos\theta^*)$: acceptance correction function $\alpha_{\Lambda}=0.747\pm0.009,\ \alpha_{\overline{\Lambda}}=-0.757\pm0.004$ P: Λ polarization

 θ^* : angle between p and spin direction in the Λ rest frame

Relativistic Heavy Ion Collider (RHIC)

The world's first and only polarized proton collider

Solenoidal Tracker At RHIC(STAR)

- Datasets: pp collision at $\sqrt{s} = 200$ GeV with integrated luminosity ~133 pb^{-1}
- Hard scattering events were selected by the EMC-based jet triggers

A and jet reconstruction

Λ reconstruction:

$$\checkmark \Lambda \rightarrow p + \pi^-; \overline{\Lambda} \rightarrow \overline{p} + \pi^+$$

- ✓ Track reconstruction and particle identification by TPC
- √ Topological criteria

- ✓ Anti- k_T with R = 0.6
- \checkmark Reconstructed Λ , $\overline{\Lambda}$ as inputs
- ✓ Including tracks and tower energies

Acceptance correction

Mixed events

- Mixed Λ with jet from different event
- Difference of V_z : $|\Delta V_z| \le 5$ cm
- The same trigger

Acceptance correction

- Reweighting 3D distribution of $\Delta\eta$, $\Delta\phi$ between Λ and jet, and $\eta_{\rm jet}$
- Correction $\frac{N(cos\theta^*)_{Data}}{N(cos\theta^*)_{Mixed}}$

Polarization extraction

$$\frac{dN}{d\cos\theta^*} \propto (1 + \alpha P\cos\theta^*)$$

Systematic uncertainties

Trigger bias: jet-patch trigger influence the flavor fraction of jet

$$\checkmark \left| \frac{f_{\text{nobias}} - f_{\text{trigger}}}{f_{\text{nobias}}} \right| \times \max(|P_{\Lambda}|, \sigma_{\Lambda})$$

 f_{nobias} : quark fraction without trigger

 $f_{\rm trigger}$: quark fraction with trigger

 P_{Λ} : extracted polarization

 σ_{Λ} : statistical uncertainties

- Mixed events method
- Background estimation by varying side-band selection window
- Uncertainties of decay parameter:

$$\checkmark a_{\Lambda} = 0.747 \pm 0.009$$

$$\checkmark a_{\overline{\Lambda}} = -0.757 \pm 0.004$$

P. A. Zyla et al. PRD 110, 030001 (2024)

Results as function of jet p_T

- First measurement of Λ polarization in jet in pp collisions
 - Clear jet p_T dependence of Λ polarization, with indication of the sign change from low to high jet p_T
 - $\overline{\Lambda}$ polarization mostly remains negative
 - Mean polarizations

•
$$P_{\Lambda} = 0.24 \pm 0.19(stat.) \pm 0.09(sys.)$$
[%]

•
$$P_{\overline{\Lambda}} = -0.77 \pm 0.20(stat.) \pm 0.09(sys.)$$
[%]

- Jet p_T dependence could be related to relative contributions from different parton flavor
- Provide first constraints on gluon PFF

Fitted slopes

 $\Lambda: 0.303 \pm 0.067$ $\overline{\Lambda}: -0.067 \pm 0.075$

Results as function of z

- Provide the first experimental constraints for PFF from pp collisions
- Possible z dependences are observed at different jet p_T ranges
- Good agreement between data and model at low jet p_T range

STAR,arXiv:2509.17487

DGMZ model:

D'Alesio, Gamberg, Murgia, Zaccheddu, Phys. Lett. B 851 (2024) 138552

Scenario 1: Different PFF for u, d, s and their antiquarks

Scenario 2: Same as in Sc. 1 including charm in unpolarized x-section

Scenario 3: Including SU(2) isospin symmetry based on Sc. 2

z: jet longitudinal momentum fraction carried by Λ

Results as function of j_T

- Provide the first experimental constraints for PFF from pp collisions
- Possible z dependences are observed at different jet p_T ranges
- Good agreement between data and model at low jet p_T range
- No significant dependence on j_T at all jet p_T ranges
- Opposite sign of Λ and $\overline{\Lambda}$ polarization at high jet p_T

STAR,arXiv:2509.17487

DGMZ model:

D'Alesio, Gamberg, Murgia, Zaccheddu, Phys. Lett. B 851 (2024) 138552

Scenario 1: Different PFF for u, d, s and their antiquarks

Scenario 2: Same as in Sc. 1 including charm in unpolarized x-section

Scenario 3: Including SU(2) isospin symmetry based on Sc. 2

 j_T : transverse momentum of Λ relative to jet

$$j_T = \frac{p_{\Lambda} \times p_{jet}}{\left| p_{jet} \right|}$$

Summary

- First measurement of transverse polarization of Λ -in-jet in pp collisions at STAR.
- Clear jet p_T dependence of Λ polarization
- Indication of non-zero $\overline{\Lambda}$ polarization and opposite sign to the Λ at large jet p_T range
- New results provide first constraints for gluon PFF
- Test universality for PFF at different processes

Outlook:

- 510 GeV data will extend jet p_T coverage and provide constraints for TMD evolution effects (see Jinhao's talk)
- Larger sample at 200 GeV pp collisions recorded in 2024 (\sim 170 pb^{-1}) will provide more constraints

Backup

Results as function of z

DGMZ model:

D'Alesio, Gamberg, Murgia, Zaccheddu, Phys. Lett. B 851 (2024) 138552

Scenario 1: Different pFFs for u, d, s and their antiquarks

Scenario 2: Same as in Sc. 1 including charm in unpolarized x-section

Scenario 3: Including SU(2) isospin symmetry based on Sce. 2

- Possible z dependences are observed at different jet p_T ranges
- Comparable distribution between data and model at low and medium jet p_T
- Large discrepancies between model calculation and data at large jet p_T

Results as function of j_T

DGMZ model:

D'Alesio, Gamberg, Murgia, Zaccheddu, Phys. Lett. B 851 (2024) 138552

Scenario 1: Different pFFs for u, d, s and their antiquarks

Scenario 2: Same as in Sc. 1 including charm in unpolarized x-section

Scenario 3: Including SU(2) isospin symmetry based on Sce. 2

- No significant dependence on j_T at all jet p_T ranges
- Opposite sign of Λ and $\overline{\Lambda}$ polarization at high jet p_T
- Large discrepancies between theoretical lines and data at large jet p_T