Accessing Nucleon Transversity via One-Point Energy Correlators

Wanchen Li wanchen1995@outlook.com

Department of Physics, Fudan University

Authors: Mei-Sen Gao, Zhong-Bo Kang, Wanchen Li, Ding Yu Shao

Preprint: arXiv:2909.15809

SPIN2025 — Sep 23rd, 2025

Wanchen Li (FDU) Transversity OPEC 1/18

Outline

- ① Transversity Distribution accessed in transversely polarized $p^{\uparrow}p$ Collision
 - The Transversity Distribution
 - Jet Production in Transversely Polarized $p^{\uparrow}p$ Collision
- One Point Energy Correlator (OPEC)
- 3 Factorization with OPEC for Inclusive Jet Production
- $oldsymbol{4}$ Phenomenology Study on Energy-Weighted π^\pm Production in Jet
- Conclusion

Wanchen Li (FDU) Transversity OPEC 2/18

Motivation

- ullet Transversity distribution h_1^q is a fundamental, yet less known, parton distribution.
- Its chiral-odd nature prevents access via inclusive DIS.
- \bullet Nucleon tensor charge δq from h_1^q

$$\delta q \equiv \int_0^1 dx \left[h_1^q(x) - h_1^{\bar{q}}(x) \right]$$

is essential for:

- Nucleon spin structure,
- Lattice QCD benchmarks,
- BSM probes, i.e. neutron β -decay.

Transversity forbidden in Inclusive DIS

Semi-inclusive DIS (SIDIS)

Jet Production in Transversely Polarized $p^{\uparrow}p$ Collision

 Proposed by F. Yuan, Phys.Rev.Lett. 100, 032003 (2008), the differential cross section comes with an azimuthal modualtion,

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{PS}} = F_{UU} + \sin\left(\phi_s - \phi_h\right) F_{UT}.$$

- The reaction plane is spanned by the two incoming protons and the jet axis.
 - ϕ_s : the azimuthal angle of transverse polarization vector S_{\perp} , with respect the to reaction plane.

ullet ϕ_h : the azimuthal angle of hadron h in jet, with respect the to reaction plane.

Wanchen Li (FDU) Transversity OPEC 4/18

One Point Energy Correlator (OPEC)

• We define the infrared-collinear (IRC) safe one-point energy correlator (OPEC) as

$$\Delta^{q}(z, \hat{\mathbf{n}}) = \sum_{X} \sum_{i \in J} \langle \Omega | \bar{\chi}_{n} \delta_{Q, \mathcal{P}_{n}} \delta^{(2)} (\hat{\mathbf{n}} - \hat{\mathbf{n}}_{i}) | JX \rangle \frac{E_{i}}{E_{J}} \langle JX | \chi | \Omega \rangle.$$

- \hat{n} is the direction of the energy flow.
- The energy fraction of the jet carried by the hadron i is $z_i = \frac{E_i}{E_I}$.
- \bullet χ is the gauge-invarinat quark field.
- The state $|JX\rangle$ represents the final-state unobserved particles X and the jet J.

Wanchen Li (FDU) Transversity OPEC 5/18

Decomposition of OPEC

 Ignoring irrelevant helicity and transverse components, we decompose OPEC into two parts:

$$\Delta^q = \frac{\rlap{/}{n}}{2} \frac{\mathcal{J}^q}{2} + \frac{\epsilon_T^{ij} \hat{\boldsymbol{n}}_{T,j} \theta_n p_J^-}{2} \frac{i \bar{n}_\mu \sigma^{i\mu} \gamma_5}{2} \mathcal{J}_{1,\perp}^q.$$

- \mathcal{J}^q is the unpolarized OPEC fragmenting jet function (FJF).
- $\mathcal{J}_{1,\perp}^q$ is the transversely polarized OPEC FJF.
- θ_n is the energy flow polar angle.

Wanchen Li (FDU) Transversity OPEC 6/18

Factorization

• We consider the OPEC in inclusive jet production in $p^{\uparrow} + p \rightarrow J + X$

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\theta_n \mathrm{d}\phi_n \mathrm{d}\eta \,\mathrm{d}p_T} = \sum_{h \in J} \int_0^1 \mathrm{d}z_h \int \mathrm{d}^2\Omega_h \,\delta\left(\phi_n - \phi_h\right) \times \delta\left(\theta_n - \theta_h\right) \,z_h \,\frac{\mathrm{d}\sigma}{\mathrm{d}z_h \,\mathrm{d}^2\Omega_h \mathrm{d}\eta \,\mathrm{d}p_T}$$

- z_h is the weight factor.
- Integral on z_h converts the final-state z_h distribution into a number!
- ullet The jet is characterized by the rapidity η and transverse momentum p_T .
- The azimuthal dependent OPEC inclusive jet production can be described by

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\theta_n \mathrm{d}\phi_n \mathrm{d}\eta \,\mathrm{d}p_T} = Z_{UU} + \sin\left(\phi_s - \phi_n\right) Z_{UT}.$$

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Factorization with OPEC in Inclusive Jet Production

• The energy-weighted unpolarized and transversely polarized structure functions Z_{UU} and Z_{UT} admit the following factorized forms:

$$Z_{UU} = \frac{\alpha_s^2}{s} p_T^2 \theta_n \sum_{a,b,c} \int \frac{\mathrm{d}x_1}{x_1} f_{a/A}(x_1, \mu) \int \frac{\mathrm{d}x_2}{x_2} f_{b/B}(x_2, \mu)$$

$$\times \mathcal{J}^c(\theta_n, Q) H^{\mathrm{U}}_{ab \to c}(\hat{s}, \hat{t}, \hat{u}) \delta(\hat{s} + \hat{t} + \hat{u}) ,$$

$$Z_{UT} = \frac{\alpha_s^2}{s} p_T^2 \theta_n \sum_{a,b,c} \int \frac{\mathrm{d}x_1}{x_1} h_1^a(x_1, \mu) \int \frac{\mathrm{d}x_2}{x_2} f_{b/B}(x_2, \mu)$$

$$\times p_T \theta_n \mathcal{J}_{1,\perp}^c(\theta_n, Q) H_{ab \to c}^{\mathrm{Collins}}(\hat{s}, \hat{t}, \hat{u}) \delta(\hat{s} + \hat{t} + \hat{u}) .$$

- Hard factors H for the partonic subprocess $ab \to c$ for UU and UT.
- The transveristy PDF h_1^a and unpolarized PDF f.
- The OPEC FJFs \mathcal{J}^c and $\mathcal{J}^c_{1,\perp}$.

4 D > 4 A > 4 B > 4 B > B 9 Q C

Wanchen Li (FDU) Transversity OPEC 8/18

Kinematics of OPEC Hadron in Jet

• The geometry yields

$$p_h^z = |\boldsymbol{p}_J| z_h = |\boldsymbol{p}_h| \cos \theta_n,$$

• In the collinear limit, we further see:

$$\theta_n \approx \sin \theta_n = \frac{j_\perp}{p_h^z} = \frac{j_\perp}{p_T z_h},$$

• Note in the centra rapidity, jet $|\mathbf{p}_J| = p_T$.

j_{\perp} or θ_n ?

 Compared with standard non-weighted TMD analysis, we have a different overall factor

$$z_h \, \mathrm{d}j_\perp^2 = p_T^2 \, z_h^3 \, \mathrm{d}\theta_n^2,$$

due to $j_{\perp} \simeq p_T z_h \theta_n$ in the collinear limit.

Why switch to θ_n ?

- In one STAR configuration,
 - $\sqrt{s} = 510 \, \text{GeV}$, $p_T = 32.3 \, \text{GeV}$,
 - at lower cut z = 0.1,
 - j_{\perp} can be measured in about (0.1, 1) GeV.
- j_{\perp} only corresponds to θ_n about (0.03, 0.3) rad.

STAR collaboration arXiv.2507.16355

j_{\perp} or θ_n ?

• However, modern colliders could achieve angular resolution at 1 mrad!

TMD Evolution and Operator Product Expansion

• In the perturbative limit, the OPEC FJFs can be matched onto their collinear counterparts using the operator product expansion (OPE) and TMD evolution

$$\mathcal{J}^{q}(\theta_{n}, Q) = \sum_{h} \int_{0}^{1} dz_{h} z_{h} \int_{0}^{\infty} \frac{db \, b}{2\pi} J_{0} \left(p_{T} \theta_{n} b \right)$$

$$\times \hat{C}_{i \leftarrow q}^{D} \otimes D_{h/i}(z_{h}, \mu_{b}) e^{-\frac{1}{2} S_{\text{pert}}(Q, b)},$$

$$p_{T} \theta_{n} \mathcal{J}_{1, \perp}^{q}(\theta_{n}, Q) = \sum_{h} \int_{0}^{1} dz_{h} z_{h} \int_{0}^{\infty} \frac{db \, b^{2}}{2\pi} J_{1} \left(p_{T} \theta_{n} b \right)$$

$$\times \delta \hat{C}_{i \leftarrow q}^{\text{collins}} \otimes \hat{H}_{1 \, h/i}^{T(1)}(z_{h}, \mu_{b}) e^{-\frac{1}{2} S_{\text{pert}}(Q, b)},$$

ullet The usual convolution \otimes is defined as

$$\hat{C}_{i \leftarrow q} \otimes F_{h/i} = \sum_{i} \int_{z_h}^{1} \frac{\mathrm{d}z'_h}{z'_h} F_{h/i}(z'_h, \mu_b) \hat{C}_{i \leftarrow q} \left(\frac{z_h}{z'_h}, \mu_b, R \right).$$

Phenomenology Study on Energy-Weighted π^\pm Production in Jet

• The OPEC Collins azimuthal asymmetry is defined as

$$A_{UT}^{\sin(\phi_s - \phi_n)} = \frac{Z_{UT}}{Z_{UU}}.$$

- We consider pion production in jets for two kinematic settings extensively studied by the STAR Collaboration:
 - (a) $\sqrt{s} = 510 \,\text{GeV}$, $p_T = 32.3 \,\text{GeV}$;
 - (b) $\sqrt{s} = 200 \, \text{GeV}$, $p_T = 13.3 \, \text{GeV}$.

Wanchen Li (FDU) Transversity OPEC 13/18

Evaluation Frameworks

We present evaluation in two approaches:

- A full TMD evolution framework
 - Parametrization of the transversity PDF, Collins functions, and non-perturbative Sudakov factor from Kang, Prokudin, Sun, Yuan (2016) ,
 - The extraction is done for SIDIS and e^+e^- annhilation,
 - The application on $p^{\uparrow}p$ collision can be a complementary test of the TMD universality.
- The JAM3D-22 global QCD analysis: JAM (2022)
 - The TMD functions are modeled by Gaussian ansätze,
 - The corresponding collinear components evolve with only DGLAP.

Wanchen Li (FDU) Transversity OPEC 14/18

p_T Distribution of the OPEC Collins Asymmetry

- JAM3D analysis gives overall larger Collins asymmetry than the TMD evolution framework
- The error propagated from the parametrization of the Collins function is larger than from the transversity PDF.
- θ_n is integrated on (0, 0.1).

(ロト 4년) N 4 분 N 4 분 N 9 및 19 이익()

θ_n Distribution of the OPEC Collins Asymmetry

- (b) $\sqrt{s} = 200 \, {
 m GeV}, \, p_T = 13.3 \, {
 m GeV}$
- Error is estimated from transversity PDF and Collins function combined.
- Two scenarios differ on the positions of their peak in θ_n .
- Current parametrizations do not yet allow us to resolve the effects of TMD evolution.

Wanchen Li (FDU) Transversity OPEC 16/18

θ_n Distribution of the OPEC Collins Asymmetry for Different Weights

• Consistently enhancement of the Collins asymmetry for a higher power of the weight z_h (i.e. higher Mellin moment).

Wanchen Li (FDU) Transversity OPEC 17/18

Conclusion

- We propose the one-point energy correlator (OPEC) for inclusive jet production in transversely polarized $p^{\uparrow}p$ collisions, sensitive to the transverse polarization effect through a $\sin(\phi_s \phi_n)$ modulation.
- Compared with standard TMD studies, OPEC has two major benefits on determination of the transversity distribution:
 - The model dependency on final state fragmentation is reduced by taking the Mellin moment of the FJF.
 - ullet OPEC estimates the Collins asymmetry by energy flow polar angle $heta_n$, accessing a much broader kinematic range of the jet substructure.
- We present a phenomenology study on π^{\pm} production in jet.

Wanchen Li (FDU) Transversity OPEC 18/18