Contribution ID: 26 Type: Oral

Measurement of $\Lambda\bar{\Lambda}$ spin correlation in proton-proton collisions at STAR

According to current understanding, the QCD vacuum contains a condensate of quark-antiquark pairs: $u\bar{u}$, $d\bar{d}$, and $s\bar{s}$. Due to the vacuum's quantum numbers, $J^{PC}=0^{++}$, these pairs are expected to appear as maximally entangled spin-triplet states with aligned spins. A recent proposal suggests that the $s\bar{s}$ pairs in the quark condensate may be experimentally probed through measurements of spin-spin correlations in $\Lambda\bar{\Lambda}$ hyperon pairs. In this talk, we present the first experimental measurements of spin-spin correlations for $\Lambda\bar{\Lambda}$, $\Lambda\Lambda$, and $\Lambda\bar{\Lambda}$ pairs in p+p collisions at $\sqrt{s}=200\,\text{GeV}$, recorded by the STAR detector in 2012. Both short-range ($|\Delta y|<0.5$ and $|\Delta\phi|<\pi/3$) and long-range (0.5 < $|\Delta y|<2.0$, or $\pi/3<|\Delta\phi|<\pi$) hyperon pairs are analyzed. For the first time, a significant spin-spin correlation is observed in short-range $\Lambda\bar{\Lambda}$ pairs, consistent with their origin in the hadronization of maximally spin-entangled $s\bar{s}$ pairs from the QCD vacuum. These results also offer valuable insight into the strange quark hadronization, the spin structure of the Λ hyperon, and mechanisms of the spin transfer from polarized protons to Λ hyperons.

Primary author: VANEK, Jan (Brookhaven National Laboratory)

Presenter: VANEK, Jan (Brookhaven National Laboratory)

Session Classification: Parallel

Track Classification: Three-dimensional structure of the nucleon: transverse momentum dependent

parton distributions