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Outline

• Basis Light-front Quantization
- What is it
- Why we need it
- How we do it

• Proton spin structure
- Form factors
- Parton distribution functions
- Spin decomposition



Discovery of Proton

• Proton was discovered by Rutherford in 1919

14N + α → 17O + p 

• Anomalous magnetic moment            not point-like

If proton were point-like spin-½ particle Experimental value

[Otto Stern, 1933]
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Spin Puzzle

Orbital angular 
momentum

𝐿 = Ԧ𝑟 × Ԧ𝑝

Need to know 3D tomography of nucleon from QCD

ℒ𝑄𝐶𝐷 =  ത𝜓𝑞(𝑖𝐷 − 𝑚𝑞)𝜓𝑞 −
1
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Hamiltonian Formalism
• Hamiltonian formalism describes bound-state structure

Nonrelativistic Nonrelativistic Relativistic

atom nucleus nucleon

• Eigenstates 𝜓  encode full information of the system

𝐻 𝜓 = 𝐸|𝜓〉
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• Relativity              retardation effect



Structure of Relativistic Bound States

• Challenge: retardation effect

• Solution: light-front timeThe Electron-Ion Collider

A very big accelerator -- colliding beams 

of electrons with beams of protons or heavier 

ions (atomic nuclei). 

A giant electron microscope for peering at the 

quarks and gluons deep inside the nucleon, 

as well as atomic nuclei.   QCD machine.

Electron-ion center of mass energy:

√s  ~ 28~140 GeV.

High luminosity (event rate) and spin polarized beams!

Electron 

microscope

Invented 1931

ca. 1940

V V

protons

or ions electronsk
m

s
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Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x) = ||∂x/ ∂x||, part icularly

d4x = J (x) d4x. We shall keep track of the Jacobian only implicit ly. The three-volume

element dω0 is t reated correspondingly.

All the above considerat ions must be independent of this reparametrizat ion. The

fundamental expressions like the Lagrangian can be expressed in terms of either x or x.

There is however one subt le point . By matter of convenience one defines the hypersphere

as that locus in four-space on which one sets the ‘init ial condit ions’ at the same ‘init ial

t ime’, or on which one ‘quant izes’ the system correspondingly in a quantum theory. The

hypersphere is thus defined as that locus in four-space with the same value of the ‘t ime-

like’ coordinate x0, i.e. x0(x0, x) = const. Correspondingly, the remaining coordinates

are called ‘space-like’ and denoted by the spat ial three-vector x = (x1, x2, x3). Because

of the (in general) more complicated metric, cuts through the four-space characterized

by x0 = const are quite different from those with x0 = const. In generalized coordinates

the covariant and contravariant indices can have rather different interpretat ion, and one

must be careful with the lowering and rising of the Lorentz indices. For example, only

∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0

which in general are completely different objects. The actual choice of x(x) is a matter

of preference and convenience.

2D Forms of H amilt onian D ynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a
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of preference and convenience.

2D Forms of H amilt onian Dynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a

i
¶

¶t
j(t) = H j(t) i

¶

¶x+
j(x+ ) =

1

2
P- j(x+ )

P0 = m2 +

P2 P- =

m2 + P̂2

P+

𝑥1, 𝑥2, 𝑥3

𝑃0, 𝑃

𝑥− = 𝑥0 − 𝑥3,
𝑥⊥ = 𝑥1,2

𝑃− = 𝑃0 − 𝑃3,
𝑃+ = 𝑃0 + 𝑃3,𝑃⊥ = 𝑃1,2

Light-front Quantization
Equal time quantization Light-front quantization [Dirac, 1949]

Time variable

Quantization surface

Coordinate space

Momentum Space

Dispersion relation



Main Advantage I
1. Simple vacuum

Proton wave function in Fock space:

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞 ത𝑞 + ⋅⋅⋅⋅⋅⋅

• Bound-state wave functions are not contaminated by vacuum 
• Higher Fock sectors reflect retardation effect

Equal-time quantization Light-front quantization

𝑥0 = const 𝑥+ = const



Main Advantage II
2.  Frame-independent wave function

Lorentz boost transformation is kinematic on light front:

෤𝑥0 = 𝛾(𝑥0 + 𝛽𝑥3)

෤𝑥3 = 𝛾(𝑥3 + 𝛽𝑥0)

෤𝑥+ = 𝛾(1 + 𝛽)𝑥+

෤𝑥− = 𝛾(1 − 𝛽)𝑥−

Light-front quantization
             Hamiltonian framework for quantum field theory

Equal-time Light-front



• Guiding principle: preserve symmetries in Hamiltonian
- rotational symmetry in transverse directions
- symmetry among identical particles

Basis Light-Front Quantization
[Vary, et.al, 2010] 

| ۧ𝑁 = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞 ത𝑞 + ⋅⋅⋅⋅⋅⋅- Fock sector expansion:

- single particle basis:
𝑞𝑞𝑞 = |𝑛1, 𝑚1, 𝑛2, 𝑚2, 𝑛3, 𝑚3ۧ

2-d harmonic oscillator 
(2DHO)

⨂ |𝑘1
+, 𝑘2

+, 𝑘3
+ۧ ⨂|𝜆1, 𝜆2, 𝜆3, 𝐶ۧ

Discretized longitudinal 
momentum

Helicity and color

෍

𝑖

(2𝑛𝑖 + 𝑚𝑖 + 1) ≤ 𝑁max ෍

𝑖

𝑘𝑖
+ = 𝐾max

• Basis setup and truncation:

m𝐽 = ෍

𝑖

(𝜆𝑖 + 𝑚𝑖)
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𝑃− ۧ𝜓 = 𝑃𝜓
− ۧ𝜓



BLFQ Algorithm Flowchart

Hamiltonian Matrix Generation

Diagonalize Hamiltonian Matrix

Light-Front Wave Functions

Observables: 𝑂 ≡ 𝑁 ෠𝑂 𝑁
Distribution Functions, Form Factors, PDFs, 

GPDs, TMDs…

Basis Enumeration
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Progress toward First Principles

• GPDs:

• TMDs:                  

N =| ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢 ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + ⋯

• Wave Functions:

12

[PLB, 867,139599] (2025) [PRD,102,016008] (2019) [PRD,108 9, 094002] (2023) 

[PRD,104,094036] (2021)

[PRD,105,094018] (2022)

[PRD,109,014015] (2024)

[PLB,855,138809] (2024)

[PLB,833,137360] (2022)

[PRD,108,036009] (2023)

[PLB,847,138305] (2023)

[PRD,110.056027] (2024)

[PLB,860,139153] (2025)

• Higher-twist Distribution (GPD,TMD,DPD):

[PRD,109,034031] (2024)

[PLB,855 138831] (2024)

[PLB,855 138829] (2024)

[arXiv:2410.11574] (2024)

• Gravitational Form Factors:
[PRD,110,056027] (2024)

See Chandan Mondal’s talk on Tuesday morning 



QCD Light-front Hamiltonian
• QCD light-front Hamiltonian from QCD Lagrangian:

𝑃𝑄𝐶𝐷
− = 𝐻𝐾 + 𝐻𝐼ℒ𝑄𝐶𝐷 = ത𝜓 𝑖𝐷 − 𝑚 𝜓 −

1

4
𝐺𝜇𝜈

𝛼 𝐺𝛼
𝜇𝜈/

𝐻𝐾 =

𝐻𝐼 =

𝜓: quark field operator
𝐴𝜇

𝑎: gluon field operator

𝐴+ = 0

7 terms in 𝐻𝐼 
13

[S. Brodsky, H-C Pauli, S. Pinsky, ‘97]



• Truncation Parameters: up to 6-parton Fock sectors with

Input Parameters

𝑁max = 7  & 𝐾 = 10

ۧN → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑢 ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠 + 𝑞𝑞𝑞𝑢 ത𝑢𝑔  

              + 𝑞𝑞𝑞𝑑 ҧ𝑑𝑔 + 𝑞𝑞𝑞𝑠 ҧ𝑠𝑔 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑞𝑔𝑔𝑔

• Input Parameters:

- determined by fitting electromagnetic Form Factors and proton mass
- separate quark mass in the quark-gluon vertex 𝑚𝑓 is needed

𝒎𝒖 𝒎𝒅 𝒎𝒔 𝒎𝒇 𝒈 𝒃𝒊𝒏𝒔𝒕 𝒃

0.401 GeV 0.4 GeV 0.6 GeV 1.8 GeV 2.5 3.0 GeV 0.6 GeV

𝑀𝑝 = 0.93GeV

∝ 𝑔𝑚𝑓 + ⋯



Fock Sector Contribution 

Valence Fock sector
𝑞𝑞𝑞 ∼ 48.84%

Dynamic gluon Fock sectors
𝑞𝑞𝑞𝑔 ～46.74%

Sea quark Fock sectors
𝑞𝑞𝑞 𝑢 ത𝑢 ∼ 0.03%

𝑞𝑞𝑞 𝑑 ҧ𝑑 ∼ 0.05%
𝑞𝑞𝑞 𝑠 ҧ𝑠 ∼ 0.02%

ۧ𝑁 → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑢 ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠 + 𝑞𝑞𝑞𝑢 ത𝑢𝑔

               + 𝑞𝑞𝑞𝑑 ҧ𝑑𝑔 + 𝑞𝑞𝑞𝑠 ҧ𝑠𝑔 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑞𝑔𝑔𝑔

Dynamic gluon Fock sectors
𝑞𝑞𝑞 𝑔𝑔 ～3.79%

Dynamic gluon Fock sectors
𝑞𝑞𝑞 𝑔𝑔𝑔 ∼ 0.18%

Sea quark & gluon Fock 
sectors

𝑞𝑞𝑞 𝑢 ത𝑢𝑔 ∼ 0.25%

𝑞𝑞𝑞 𝑑 ҧ𝑑𝑔 ∼ 0.37%
𝑞𝑞𝑞 𝑠 ҧ𝑠𝑔 ∼ 0.16%



• Elastic scattering of proton

𝑒 𝑝 + ℎ 𝑃 → 𝑒 𝑝′ + ℎ(𝑃′)

• Elastic electron scattering established the extended nature of the proton 
(proton radius)

• The Fourier transformation of these form factors provide spatial 
distributions (charge and magnetization distributions)

[R. Hofstadter, 1961]

Electromagnetic Form Factor

Dirac Form Factor Pauli Form Factor

18



Electromagnetic Form Factors

• Qualitatively agree with the experimental data for charge and magnetic FFs

𝑁 𝑝′ 𝐽𝜇 0 𝑁 𝑝 = ത𝑢 𝑝′ 𝛾𝜇𝐹1 𝑄2 +
𝑖𝜎𝜇𝜈𝑞𝜈

2𝑚𝑁
𝐹2 𝑄2 𝑢(𝑝)

Preliminary

𝐺𝐸(𝑄2) = σ𝑞 𝑒𝑞𝐹1
𝑞

(𝑄2) −
𝑄2

4𝑀𝑁
2  σ𝑞 𝑒𝑞𝐹2

𝑞
(𝑄2) ,

𝐺𝑀(𝑄2) = σ𝑞 𝑒𝑞𝐹1
𝑞

(𝑄2) + σ𝑞 𝑒𝑞𝐹2
𝑞

(𝑄2). 

𝑟𝑐 = 0.96fm

𝑟𝑚 = 0.93fm



Axial Form Factor
• Provide information on axial charge distributions

𝐺𝐴 𝑄2 = 𝐺𝑢 𝑄2 − 𝐺𝑑(𝑄2)

• Black line: valence quark
• Qualitatively agree with the 

experimental data

ΔΣ𝑢 = 0.73 (0.82)

ΔΣ𝑑 = −0.17 (−0.45)

Δ𝐺 = 0.13

ΔΣ𝑢−𝑑 =0.90  (1.27)

ΔΣ𝑢+𝑑  = 0.56 (0.37)

Exp. value𝑟𝐴 = 0.59 fm



Parton Distribution Functions (PDF)
➢ Deep Inelastic Scattering (SLAC 1968)

𝑒 𝑝 + ℎ 𝑃 = 𝑒′ 𝑝′ + 𝑋(𝑃′)

➢ Parton distribution functions (PDFs) are extracted from 

DIS processes.

PDFs encode the distribution of longitudinal momentum and polarization 

carried by the constituents

Discovery of spin ½ quarks 
and partonic structure

𝑋

𝑋

Φ 𝛾+
𝑥, 𝑄2 = න

𝑑𝑧−

8𝜋
 𝑒𝑖𝑥𝑃+𝑧−/2⟨𝑃, Λ ത𝜓 𝑧 𝛾+𝜓 0 𝑃, Λۧ



Unpolarized PDF

Unpolarized PDFs:

• Parton number density

All results are at the initial scale

Preliminary

• Valence quarks contribute mainly at 
𝑥~0.3

• Gluon distributions are larger than 
those of sea quark

• Gluon and sea quark dominate in 
small 𝑥 region



Helicity Parton Distribution Functions

Helicity PDFs:

• Opposite signs for u and d quark
• Gluon contribution is positive
• Qualitatively agree with expectation

24

Preliminary



• Deeply Virtual Compton Scattering (DVCS) 

𝑒 𝑝 + 𝑃 𝑃 → 𝑒′ 𝑝′ + 𝑃′ 𝑃′ + 𝛾

3D Structure in Coordinate Space

• Encode the information about three-dimensional 
spatial structure of a hadron

• Generalized Parton Distribution Functions (GPDs)

Φ 𝛾+
𝑥, Δ; 𝑄2 = න

𝑑𝑧−

8𝜋
 𝑒𝑖𝑥𝑃+𝑧−/2⟨𝜓ℎ 𝑃 + Δ, Λ ത𝜓 𝑧 𝛾+𝜓 0 𝜓ℎ(𝑃, Λ)ۧ

[X. Ji, Phys. Rev. D 55, 7114 (1997)]
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GPDs for u and d Quarks

• Include contributions from all Fock sectors
• 𝐸𝑢 is positive while 𝐸𝑑 is negative 26

Preliminary



• 𝐸𝑠 and 𝐸𝑔 mainly contribute at small 𝑥 region 27

GPDs for Gluon and Strange Quark
Preliminary



GPDs for Sea Quarks

28
• GPD 𝐻 and 𝐸 for ത𝑢 and ҧ𝑑 peak at small 𝑥 
• GPD 𝐸 for ത𝑢 and ҧ𝑑 are positive

Preliminary



Orbital Angular Momentum
➢ Ji Sum Rule

Total Angular Momentum: 𝐽𝑞,𝑔 =
1

2
න𝑑𝑥 𝑥[𝐻 𝑥, 0,0 + 𝐸 𝑥, 0,0 ]

Light-Cone Gauge 𝐴+ = 0

Spin Contribution: 𝑆𝑞,𝑔 = න𝑑𝑥 ෩𝐻(𝑥, 0,0)

OAM Contribution:
𝐿𝑞 = Jq − S𝑞/2

At initial scale 𝜇0

𝒖 𝒅 𝒔 g ഥ𝒖 ഥ𝒅

𝐽 0.4318 −0.0013 0.00003 0.053 0.00008 0.00008

𝑆 0.7323 −0.1692 0.00013 0.125 0.00034 0.00034

𝐿 0.0657 0.0833 −0.00010 −0.072 −0.00026 −0.00026

𝐿𝑔 = Jg − S𝑔



Conclusions
• Basis Light-front Quantization

- A nonperturbative approach to quantum field theory
- Calculate proton structure from QCD first principles
- Spin structure qualitatively agree with expectation
- Separate quark mass for vertex interaction is needed

Thank you!



Outlook
Current status

Full QCD interaction
Deutron calculation

𝑞𝑞𝑞 𝑞𝑞𝑞 + 𝑞𝑞𝑞 𝑞𝑞𝑞 𝑔

EMC effect

Intrinsic charm Sea asymmetry Origin of spin and mass

I n t r o d u c t i on B L F Q | qqq i | qqq i + | qqqg i C on c l u si on s

Fundamental Propert ies: Mass and Spin

• About 99% of the visible mass is

contained within nuclei

• Nucleon: composite part icles, built

from nearly massless quarks (⇠ 1%

of the nucleon mass) and gluons

• How does 99% of the nucleon mass

emerge?

• Quant itat ive decomposit ion of

nucleon spin in terms of quark and

gluon degrees of freedom is not yet

fully understood.

• To address these fundamental issues

! nature of the subatomic force

between quarks and gluons, and the

internal landscape of nucleons.

1
P i c t u r es ( t op t o b ot t om ) t ak en f r om A . Si gn or i ’ s t a l k , J . Q u i t a l k , C . L or ce’ s t a l k

3 / 2 9
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Thank you!
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