Fragmentation functions at NNLO & constraints on proton PDFs

XiaoMin Shen(沈晓民)

Institute of Modern Physics, Chinese Academy of Sciences

Based on *PRL 135, 041902, 2025*. In collaboration with Jun Gao, Hongxi Xing, Yuxiang Zhao, Bin Zhou

26th International Symposium on Spin Physics A Century of Spin

Fragmentation Functions (FFs) as extension of the parton model

[2304.03302]

[See also talks of A. Vossen & Y.-K. Song]

Why FFs: key ingredients of QCD factorization framework

Semi-Inclusive DIS (SIDIS): e + N -> e + h + X:

Why FFs: inputs of nucleon structure studies

Identified hadron in SIDIS helps discriminate the initial parton

FFs are key inputs of pPDFs determination

$$g_1^h(x,Q^2,z) = \frac{1}{2} \sum_q \, e_q^2 \, [\Delta q(x,Q^2) \, D_q^h(Q^2,z) + \Delta \bar{q}(x,Q^2) \, D_{\bar{q}}^h(Q^2,z)] + \mathcal{O}(\alpha_s)$$
 pPDF FF

[See also E. Nocera's talk on Monday]

Determination of FFs from global data fit

Field theory definiton of the collinear (integrated) quark FFs [Collins, Soper '82]

$$D_{h/q}(z) = \frac{z}{4} \sum_{X} \int \frac{\mathrm{d}\xi^{+}}{2\pi} e^{iP_{h}^{-}\xi^{+}/z} \operatorname{Tr} \left[\langle 0 | \mathcal{W}(\infty^{+}, \xi^{+}) \psi_{q}(\xi^{+}, 0^{-}, \vec{0}_{T}) | P_{h}, S_{h}; X \rangle \right] \times \langle P_{h}, S_{h}; X | \bar{\psi}_{q}(0^{+}, 0^{-}, \vec{0}_{T}) \mathcal{W}(0^{+}, \infty^{+}) | 0 \rangle \gamma^{-}$$

Global analyses based on factorization formula

[See also H.-Y. Xing's talk]

2025.Sept.23, Qingdao

Outline

- > Introduction
- > Global analyses of unpolarized collinear FFs
- > NPC analyses of FFs at NNLO

collaboration	NNFF	JAM	$\mathrm{DSS}+$	BDSSV	MAP	NPC
SIA(ee)	✓	√	✓	✓	✓	✓
SIDIS (ep)	X	✓	✓	✓	\checkmark	✓
pp incl. hadron	X	X	\checkmark	X	X	✓
pp hadron in jet	X	X	X	X	X	✓
FFs	π^{\pm}, K^{\pm}, p	π^{\pm},K^{\pm}	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$	π^\pm	$\pi^{\pm},\!K^{\pm}$	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$
			$\mid \eta \mid$			K^0,η,Λ
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO

Only some of the recent global analyses are shown here.

Efforts on global data fitting of parton FFs

collaboration	NNFF	JAM	$\mathrm{DSS}+$	BDSSV	MAP	NPC
SIA(ee)	✓	\checkmark	✓	✓	✓	✓
SIDIS (ep)	X	\checkmark	✓	✓	✓	✓
pp incl. hadron	X	X	✓	X	X	✓
pp hadron in jet	X	X	X	X	X	✓
FFs	π^{\pm}, K^{\pm}, p	π^{\pm},K^{\pm}	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$	π^{\pm}	π^{\pm}, K^{\pm}	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$
			$\mid \eta \mid$			K^0,η,Λ
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO

Only some of the recent global analyses are shown here.

- > FFs determination at NLO from Nonperturbative Physics Collaboration (NPC)
 - NPC23 FFs to light charged hadrons:

Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903,* '24 Gao, Liu, **XS**, Xing, Zhao, *PRD 110, 114019,* '24 (Editors' suggestion)

NPC23 FFs to light neutral hadrons:

Gao, Liu, Li, XS, Xing, Zhao, Zhou, 2503.21311 (PRD)

NPC23 NLO analyses incorporates various types of data

> various types of hadron production data in NPC FFs determination

Hadron-in-jet data provides direct probe of z dependence: $\underbrace{p_{T,h}}_{p_{T,j}} \overset{\mathrm{LO}}{\longrightarrow} z$

All theoretical predictions calculated with FMNLO.

[Liu, XS, Zhou, Gao, 2305.14620 (JHEP)]

The NPC23 NLO FF sets

Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903,* '24 Gao, Liu, **XS**, Xing, Zhao, *PRD 110, 114019,* '24 (Editors' suggestion) Gao, Liu, Li, **XS**, Xing, Zhao, Zhou, 2503.21311 (*PRD*)

NPC23 FFs are publicly available:

LHAPDF 6.5.5

Main page	PDF sets	Class hierarchy	Examples	More								
2070000	NPC23_	Plp_nlo			(tarb	all)	(info file)	127				
2070200	NPC23_	NPC23_KAp_nlo (tarball) (info file)										
2070400	NPC23_	PRp_nlo			(tark	all)	(info file)	127				
2070600	NPC23_	Plm_nlo			(tarb	all)	(info file)	127				
2070800	NPC23_	NPC23_KAm_nlo (tarball) (info file)										
2071000	NPC23_	NPC23_PRm_nlo (tarball) (info file)										
2071200	NPC23_	Plsum_nlo			(tark	all)	(info file)	127				
2071400	NPC23_	KAsum_nlo			(tarb	all)	(info file)	127				
2071600	NPC23_	PRsum_nlo			(tarb	all)	(info file)	127				
2071800	NPC23_	_CHHAp_nlo			(tarb	all)	(info file)	127				
2072000	NPC23_	_CHHAm_nlo			(tarb	all)	(info file)	127				
2072200	NPC23_	_CHHAsum_nlo			(tarb	all)	(info file)	127				

Outline

- > Introduction
- > Global analyses of unpolarized collinear FFs
- > NPC analyses of FFs at NNLO

The need for high-precision FFs extractions

- ❖ The Electron-Ion Collider (EIC)
 - start operation in the early 2030s
 - unprecedented access to nucleon structure
 - FFs as keys ingredients of SIDIS at the EIC

Efforts from China

ep collisions: EicC

ee collisions: BESIII measurements

[BESIII, 2502.16084 (PRL)]

[See Yateng Zhang's talk]

High-precision FFs as key output & input

Recent progresses from pQCD

$SIA(e^+e^-)$ at N3LO

[He, Xing, Yang, Zhu, PRL.135.101901(2025)]

SIDIS(ep) at NNLO

[Bonino, Gehrmann, et al. & Goyal, Moch, et al.

PRL.132.251901, '24, PRL.132.251902, '24, PRL.133.211904, '24, PRL.133.211905, '24, 2504.05376]

pp at NNLO

[Czakon, Generet, Mitov, Poncelet, 2503.11489]

Figure credit: A. Metz, A. Vossen, 1607.02521

NPC analyses of FFs at NNLO + constraints on proton PDFs

[Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902, 2025]

collaboration	NNFF	JAM	$\mathrm{DSS}+$	BDSSV	MAP	NPC	NPC
SIA(ee)	✓	√	✓	✓	✓	√	√
SIDIS (ep)	X	✓	✓	✓	✓	\checkmark	✓
pp incl. hadron	X	X	✓	X	X	\checkmark	X
pp hadron in jet	X	X	X	X	X	✓	X
FFs	π^{\pm}, K^{\pm}, p	π^{\pm},K^{\pm}	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$	π^\pm	π^{\pm}, K^{\pm}	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$	π^{\pm}, K^{\pm}
			$\mid \eta \mid$			K^0,η,Λ	
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO	NNLO

Only some of the recent global analyses are shown here.

Global analysis of FFs at full NNLO: the datasets

$SIA(e^+e^-)$ data used in the fit:

exp.	$\sqrt{s}/{ m GeV}$	$ \operatorname{lum.}(n_Z) $	year	final states	hadrons
DELPHI	189	157.7 pb^{-1}	2002	inc. had.	π^{\pm}, K^{\pm}
OPAL	m_Z	780 000	1994	$Z\! o qar q$	π^{\pm}, K^{\pm}
ALEPH	m_Z	520 000	1995	$Z\! o qar q$	π^{\pm}, K^{\pm}
DELPHI	m_Z	1 400 000	1998	$Z\! o qar q$	π^{\pm}, K^{\pm}
				$Z\! o\! bar b$	π^{\pm}, K^{\pm}
				$Z\! o qar q$	π^{\pm}, K^{\pm}
SLD	m_Z	400 000	2004	$Z \rightarrow b ar{b}$	π^{\pm}, K^{\pm}
				$Z \rightarrow c\bar{c}$	π^{\pm}, K^{\pm}
TASSO	44	34 pb^{-1}	1989	inc. had.	π^{\pm},π^0
TASSO	34	77 pb^{-1}	1989	inc. had.	π^{\pm}, K^{\pm}
$\mathrm{TPC}/2\gamma$	29	70 pb^{-1}	1988	inc. had.	π^{\pm}, K^{\pm}
Belle	10.52	$68 \; {\rm fb^{-1}}$	2013	inc. had.	π^{\pm}, K^{\pm}
BaBar	10.54	$0.91 \; \mathrm{fb^{-1}}$	2013	inc. had.	π^{\pm}, K^{\pm}
BESIII	2.0-3.671	253 pb^{-1}	2025	inc. had.	π^{\pm}, K^{\pm}

[BESIII, 2502.16084 (PRL)]

- Kinematic cuts in our analyses:
 - Q > 3 GeV (SIA)
 - Q > 2 GeV(SIDIS)
 - z > 0.01, $E_h > E_{h,min}$ (0.8 GeV by default)

Global analysis of FFs at full NNLO: theoretical prediction

FFs at starting scale $Q_0 = 1.4 \text{ GeV}$

parameterized as

$$zD_i^h(z, Q_0) = z^{\alpha_i^h} (1-z)^{\beta_i^h} \exp\left(\sum_{n=0}^m a_{i,n}^h z^{n/2}\right)$$

charge/isospin symmetries suppress number of free parameters (54 in total)

$$D_{u\to\pi^+}(z,Q) = D_{\bar{u}\to\pi^-}(z,Q)$$

$$D_{u\to\pi^+}(z,Q_0) = D_{\bar{d}\to\pi^+}(z,Q_0)$$

FFs at arbitrary energy scale $(Q_0 \rightarrow Q)$

3-loop timelike DGLAP evolution [Mitov, Moch, Vogt, Almasy]

 \rightarrow + $P_{qg}^{T(2)}$ correction[Chen, Yang, Zhu, Zhu, '20]

> Heavy quark FFs are frozen below mass threshold.

2025.Sept.23, Qingdao Page 15

Global analysis of FFs at full NNLO: results

> Fit quality of the NNLO analyses

	В	ESIII	CO	COMPASS		B-factories		E-SIA	global		
$E_{h,\min}[\mathrm{GeV}]$	$N_{ m pt}$	$\chi^2/N_{ m pt}$	$N_{ m pt}$	χ^2	$\chi^2/N_{ m pt}$						
0.5	242	1.26	358	1.65	233	1.06	426	1.19	1259	1650.2	1.31
0.6	212	1.21	290	1.59	228	0.92	423	0.97	1153	1338.8	1.16
0.7	182	1.11	214	1.47	223	0.61	413	0.84	1032	997.2	0.97
0.8	152	0.98	142	1.30	218	0.53	407	0.82	919	781.8	0.85
0.9	122	1.05	94	1.29	213	0.52	407	0.80	836	687.1	0.82
1.0	98	1.14	54	0.97	209	0.49	403	0.80	764	587.2	0.77

energy cut of the identified hadron

LHAgrids of our FFs have been submitted to the LHAPDF repository.

Test on leading-twist collinear factorization at low Q

Theory v.s. data for COMPASS06 (SIDIS: 2~5GeV)

Theory v.s. data for BESIII (SIA: ~3GeV)

Kinematic cuts in our analyses:

- Q > 3 GeV (SIA)
- Q > 2 GeV(SIDIS)
- $z > 0.01, E_h > 0.8 \text{ GeV}$

the first test of universality of FFs at Q~3 GeV using ee and SIDIS data

Application: constraining proton PDFs at NNLO

SIDIS may also constrain PDFs:

$$rac{\mathrm{d}^3\sigma_h}{\mathrm{d}x\mathrm{d}y\mathrm{d}z_h} = f_{i/p}(x)\otimes\hat{\sigma}_{j\leftarrow i}(x,y,z)\otimes D_{h/j}(z_h) + \mathcal{O}igg(rac{\Lambda_{\mathrm{QCD}}}{Q}igg)$$
 unpol. PDF

$$g_1^h(x,Q^2,z) = \frac{1}{2} \sum_q \, e_q^2 \left[\Delta q(x,Q^2) \, D_q^h(Q^2,z) + \Delta \bar{q}(x,Q^2) \, D_{\bar{q}}^h(Q^2,z) \right] + \mathcal{O}(\alpha_s)$$
 pPDF FF

LO x-section of iso-scalar target SIDIS(COMPASS)

$$\frac{\mathrm{d}\sigma_{\boldsymbol{h}}}{\mathrm{d}x\mathrm{d}y\mathrm{d}z_{\boldsymbol{h}}} = f_{i/p}(x) \otimes \hat{\sigma}_{\boldsymbol{j}\leftarrow i}(x,y,z) \otimes D_{h/j}(z_{\boldsymbol{h}}) + \mathcal{O}\left(\frac{NQCD}{Q}\right)$$

$$\text{unpol. PDF} \qquad \mathsf{FF}$$

$$g_1^h(x,Q^2,z) = \frac{1}{2} \sum_q e_q^2 \left[\Delta q(x,Q^2) D_q^h(Q^2,z) + \Delta \bar{q}(x,Q^2) D_{\bar{q}}^h(Q^2,z)\right] + \mathcal{O}(\alpha_s)$$

$$\mathsf{pPDF} \qquad \mathsf{FF}$$

$$+ \left(s(x) - \bar{s}(x)\right) \left(D_s^{K+}(z) - D_{\bar{s}}^{K+}(z)\right) + \cdots$$

is sensitive to **strangeness asymmetry**

$$r_a = \frac{s - \bar{s}}{s + \bar{s}}$$

XiaoMin Shen

SPIN2025 2025.Sept.23, Qingdao Page 18

Application: constraining unpolarized PDFs at NNLO

 \triangleright Correlation between χ^2 and PDFs

Modified PDFs which reflect the impact of SIDIS data

- Reweighting of the NNPDF4.0 PDF set
- Profiling of the MSHT20 PDF set

PDF sets before and after reweighting/profiling

[Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902, 2025]

2025.Sept.23, Qingdao

Summary

- > NPC collaboration has delivered precise and comprehensive FF sets at NLO.
- > This work presents the first global (SIA+SIDIS) FFs determination at full NNLO.
- > FF studies may also contribute to nucleon structures analyses.

	NPC23 NLO	this talk
SIA(ee)	\checkmark	√
SIDIS (ep)	✓	\checkmark
pp incl. hadron	✓	X
pp hadron in jet	✓	X
FFs	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$	π^{\pm}, K^{\pm}
	K^0,η,Λ	
pQCD order	NLO	NNLO

Global FF analyses from NPC (submitted to LHAPDF repository):

NLO charged hadron:

Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903*, 2024

Gao, Liu, **XS**, Xing, Zhao, *PRD 110, 114019*, (Editors' suggestion), 2024

NLO neutral hadron:

Gao, Liu, Li, **XS**, Xing, Zhao, Zhou, 2503.21311 (*PRD*)

NNLO: Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902, 2025 (this talk)

Thank you for your attention!

Backup slides

The parameterization

- Joint determination of FFs to charged pion, kaon at NNLO in QCD
- Parameterization at $Q_0 = 1.4 \text{ GeV}$

$$zD_i^h(z,Q_0) = z^{\alpha_i^h} (1-z)^{\beta_i^h} \exp\left(\sum_{n=0}^m a_{i,n}^h z^{n/2}\right)$$

Charge conjugation symmetry

$$D_{u\to\pi^+}(z,Q) = D_{\bar{u}\to\pi^-}(z,Q)$$

Isospin symmetry

$$D_{u\to\pi^+}(z,Q_0) = D_{\bar{d}\to\pi^+}(z,Q_0)$$

[Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902,]

flavor	favored	a_0	α	β	a_1	a_2
$u = \overline{d}$	✓	✓	✓	✓	1	1
$d = \overline{u}$	X	/	√	/	✓	✓
$s = \overline{s}$	X	/	$=\alpha_d$	/	✓	✓
$c = \overline{c}$	X	\	√	/	✓	✓
$b = \overline{b}$	X	1	√	/	1	1
g	X	1	√	/	/	X

flavor	favored	a_0	α	β	a_1	a_2
u	✓	1	✓	√	✓	1
\overline{s}	✓	✓	$= \alpha_u$	$=\beta_u$	✓	1
$s = \overline{u} = d = \overline{d}$	X	1	✓	✓	1	X
$c = \overline{c}$	X	1	√	√	✓	1
$b = \overline{b}$	X	1	1	1	1	1
g	X	✓	√	√	✓	X

2025.Sept.23, Qingdao Page 22

pQCD order

> Fit quality of the NNLO analyses

	В	ESIII	CO	COMPASS		B-factories		HE-SIA		global		
$E_{h,\min}[\mathrm{GeV}]$	$V] N_{ m pt}$	$\chi^2/N_{ m pt}$	$N_{ m pt}$	χ^2	$\chi^2/N_{ m pt}$							
0.5	242	1.26	358	1.65	233	1.06	426	1.19	1259	1650.2	1.31	
0.6	212	1.21	290	1.59	228	0.92	423	0.97	1153	1338.8	1.16	
0.7	182	1.11	214	1.47	223	0.61	413	0.84	1032	997.2	0.97	
0.8	152	0.98	142	1.30	218	0.53	407	0.82	919	781.8	0.85	
0.9	122	1.05	94	1.29	213	0.52	407	0.80	836	687.1	0.82	
1.0	98	1.14	54	0.97	209	0.49	403	0.80	764	587.2	0.77	

> Alternative fits at NLO

$E_{h,\min}[\text{GeV}]$	В	BESIII		COMPASS		B-factories		HE-SIA		global		
$E_{h,\min}[GeV]$	$N_{ m pt}$	$\chi^2/N_{ m pt}$	$N_{ m pt}$	χ^2	$\chi^2/N_{ m pt}$							
0.5	242	1.38	358	1.50	233	1.01	426	1.23	1259	1631.2	1.30	
0.6	212	1.26	290	1.44	228	0.87	423	1.06	1153	1333.2	1.16	
0.7	182	1.12	214	1.43	223	0.67	413	0.97	1032	1057.9	1.03	
0.8	152	1.03	142	1.26	218	0.54	407	0.85	919	801.6	0.87	
0.9	122	1.08	94	1.22	213	0.52	407	0.84	836	697.5	0.83	
1.0	98	1.18	54	0.93	209	0.49	403	0.83	764	603.7	0.79	

