

Pion and Kaon Fragmentation Functions

Hui-Yu Xing (邢惠瑜)

Based on Eur. Phys. J. C 84 (2024) 1, 82 and arXiv: 2504.08142

In collaboration with: Prof. Craig D. Roberts

26th International Spin Symposium on spin physics (Spin2025) Sept.22-26, 2025, Qingdao, China

QCD: Emergent Phenomena

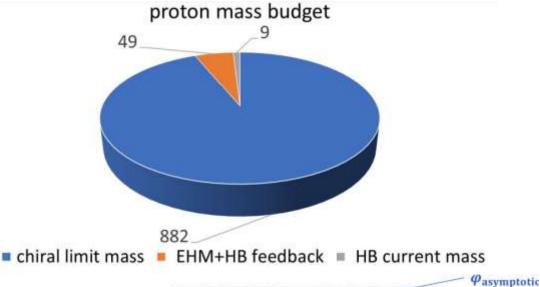
Craig D. Roberts, David G. Richards, Tanja Horn, Lei Chang Prog. Part. Nucl. Phys. 120 (2021) 103883

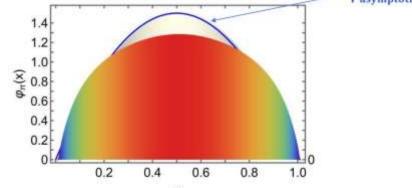
> Two fundamental phenomena in QCD

- Emergent Hadron Mass (EHM)
- Proton mass budget

$$M_{A=N+Z} \approx N*m_n + Z*m_p$$

Only 9 MeV/939 MeV is directly from Higgs

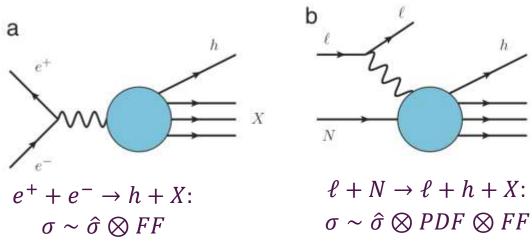

Evidently, there is another phenomenon in Nature that is extremely effective in producing mass:

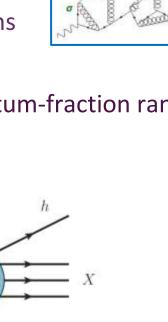

Emergent Hadron Mass (EHM)

- > EHM are expressed in every strong interaction observables.
- > EHM generates broadening in DF & DA.

Hui-Yu Xing et al., Phys.Lett.B 849 (2024) 138462

Confinement





Fragmentation Function

- High energy interaction often produce jets of energetic hadrons
 - nearly parallel longitudinal momenta & relative small transverse momenta
- > Such jets are normally understood to originate with gluon and quark partons
 - produced in the initial collision
 - Escape interaction region
 - Driven by "confinement forces", fragment into a shower of colourless hadrons
- > Hadronisation processes are described by fragmentation functions (FFs)
 - $D_1^{h/i}(z)$ is the number of hadrons h inside parton i in the light-front momentum-fraction range [z, z + dz]
 - it plays a crucial rule in the following processes:

$$p + p \to h + X:$$

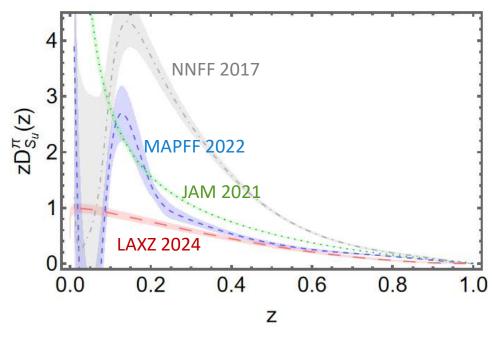
$$\sigma \sim \hat{\sigma} \otimes PDF \otimes PDF \otimes FF$$

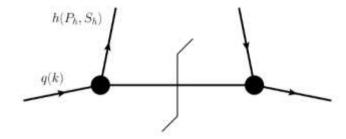
Current development

➤ What is known about FFs? Still limited

Experiment: TASSO 1982, JADE 1985, TPC 1988, OPAL 1994, DELPHI 1998, ALEPH 2000, SLD 2004,

Belle 2013, BaBar 2013, BESIII 2023


Data are used in global fits for FFs

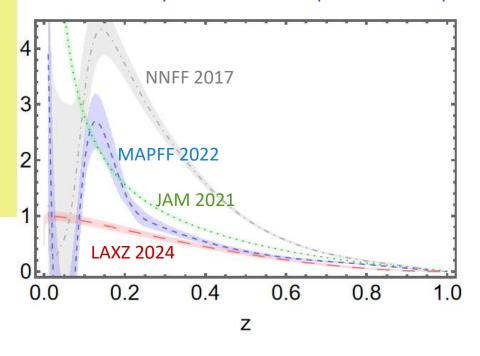

Fit: HKNS 2007, DSS 2007, NNFF 2017, JAM 2021, MAPFF 2022, LAXZ 2024, NPC 2024

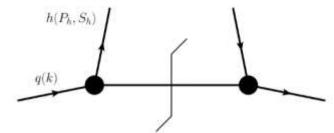
Model dependent: mutually inconsistent

Which is correct? What should the FFs look like?

- > Theory:
 - Like DFs, FFs are nonperturbative objects
 - Simplest version = spectator models
 a time-like off-shell parton fragments into a hadron

Hitherto, no realistic results & QCD prediction have been available


Current development

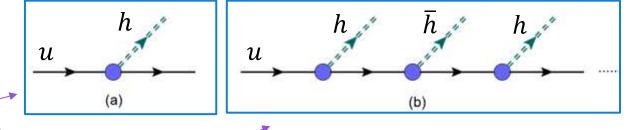

- ➤ What is known about FFs? Still limited
- Uncertain information in
 - ⇒ uncertain information out
- ➤ Hard to extract information about PDFs from such processes unless FFs are known
- Serious impediment to interpretation of data from modern and anticipated facilities

Which is correct? What should the FFs look like?

- > Theory:
 - Like DFs, FFs are nonperturbative objects
 - Simplest version = spectator models
 a time-like off-shell parton fragments into a hadron

DELPHI 1998, ALEPH 2000, SLD 2004,

Hitherto, no realistic results & QCD prediction have been available


hyxing@nju.edu.cn, Pion and Kaon Fragmentation Functions. Total pages (18)

DLY relation and jet equation

R. D. Field, R. P. Feynman, Nucl. Phys. B 136 (1978) 1

Models

- > Field + Feynman Jet Fragmentation approach
 - Readily handles multiple hadron production

Basic need is elementary fragmentation function:

$$d_p^h(z;\zeta)$$

which is mathematical probability that initial parton, p, produces hadron, h in one single process

$$D_p^h(z) = d_p^h(z) + \int_z^1 (dy/y) \, d_p^h(1 - z/y) D_p^h(y)$$

- ightharpoonup Using $d_q^h(z;\zeta)$, one solves coupled set of linear cascade equations to determine complete FF, $D_q^h(z;\zeta)$, which accounts for all hadrons produced from the initial quark
- > Sum rule: $\sum_{h} \int_{0}^{1} dz \, z D_{p}^{h}(z;\zeta) = 1$
 - The hadron jet generated by parton p contains all momentum of initial state

DLY relation and Elementary Fragmentation Functions

> FF is timelike twin of the spacelike process

$$\gamma^*(Q^2) + h \to X \Leftrightarrow \gamma^*(Q^2) \to h + X$$

- ➤ Crossing symmetry ⇒ relation between DFs and FFs
 - Drell-Levy-Yan (DLY) Relation
 - Compute elementary FFs by analytic continuation of DFs onto domain x>1 $d_q^h(z;\zeta) \propto zq^h(\frac{1}{z};\zeta)$

S. D. Drell, D. J. Levy, T.-M. Yan, A Theory of Deep Inelastic Lepton Nucleon Scattering and Lepton Pair Annihilation Processes. 2. Deep Inelastic electron Scattering,

Phys. Rev. D 1 (1970) 1035-1068.

S. D. Drell, D. J. Levy, T.-M. Yan, A Theory of Deep Inelastic Lepton Nucleon Scattering and Lepton Pair Annihilation Processes. 3. Deep Inelastic electron-positron Annihilation,

Phys. Rev. D 1 (1970) 1617-1639.

- DLY was proved using operator definitions and crossing symmetry
- > Fragmentation Functions and Confinement
 - FFs express how a shower of coloured partons coalesce into colour singlet final states ... this is the empirical expression of confinement
 - Overlap representation of parton DFs

$$q^h(x;\zeta) \sim \int d^2k_\perp |\Psi_q^h(x,k_\perp^2)|^2$$

- ✓ Seeds of confinement, expressed in hadronisation, are already present in wave functions of the hadrons involved
- ✓ EHM, expressed in DF and LFWFs, modulates the FFs, so that the hadronisation and confinement process

Predictions for Fragmentation Functions using cascade equations

- \triangleright Empirically, at energies below ~ 100 GeV, π, K dominate (95%) particle production in SIA: $e^+ + e^- \rightarrow h + X$
- \triangleright So, illustrate procedure via predictions for π, K FFs
- \triangleright Exploit G-parity symmetry, one has set of 9 coupled Volterra integral equations of 2nd kind

Preprint no. NJU-INP 099/25

Kaon and Pion Fragmentation Functions

Hui-Yu Xing (邢惠瑜)^{1,2 10}, Wen-Hao Bian (边文浩)^{1,2 10}, Zhu-Fang Cui (崔著钫)1,210, Craig D. Roberts1,210

Email: phycui@nju.edu.cn (ZFC); cdroberts@nju.edu.cn (CDR)

unfavoured

$$\begin{cases} D_{u}^{\pi^{+}}(z) = d_{u}^{\pi^{+}}(z) + \int_{z}^{1} \frac{dy}{y} \sum_{q=u,d,s} d_{u}^{q}(\frac{z}{y}) D_{q}^{\pi^{+}}(y) , \\ D_{u}^{K^{+}}(z) = d_{u}^{K^{+}}(z) + \int_{z}^{1} \frac{dy}{y} \sum_{q=u,d,s} d_{u}^{q}(\frac{z}{y}) D_{q}^{K^{+}}(y) , \\ D_{s}^{K^{-}}(z) = d_{s}^{K^{-}}(z) + \int_{z}^{1} \frac{dy}{y} \sum_{q=u,d} d_{s}^{q}(\frac{z}{y}) D_{q}^{K^{-}}(y) , \\ D_{u}^{\pi^{-}}(z) = 0 + \int_{z}^{1} \frac{dy}{y} \sum_{q=u,d,s} d_{u}^{q}(\frac{z}{y}) D_{q}^{\pi^{-}}(y) , \\ D_{u}^{K^{-}}(z) = 0 + \int_{z}^{1} \frac{dy}{y} \sum_{q=u,d,s} d_{u}^{q}(\frac{z}{y}) D_{q}^{K^{-}}(y) , \\ D_{u}^{K^{0}}(z) = 0 + \int_{z}^{1} \frac{dy}{y} \sum_{q=u,d,s} d_{u}^{q}(\frac{z}{y}) D_{q}^{K^{0}}(y) , \end{cases}$$

$$D_u^{K^0}(z) = 0 + \int_z^1 \frac{dy}{y} \sum_{q=u,d,s} d_u^q(\frac{z}{y}) D_q^{K^0}(y) ,$$

$$D_{u}^{\bar{K}^{0}}(z) = 0 + \int_{z}^{1} \frac{dy}{y} \sum_{q=u,d,s} d_{u}^{q}(\frac{z}{y}) D_{q}^{\bar{K}^{0}}(y),$$

$$D_s^{\pi^+}(z) = 0 + \int_z^1 \frac{dy}{y} \sum_{q=u,d} d_s^q(\frac{z}{y}) D_q^{\pi^+}(y) ,$$

$$D_s^{K^+}(z) = 0 + \int_z^1 \frac{dy}{y} \sum_{q=u,d} d_s^q(\frac{z}{y}) D_q^{K^+}(y).$$

¹School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China

²Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China

Pion and Kaon DFs \Rightarrow EFFs

Continuum (CSMs) predictions for hadron scale pion and kaon valence-quark DFs

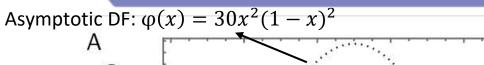
$$u_{\pi}(x;\zeta_{H}) = n_{\pi} \ln[1 + (\frac{1}{\rho^{2}})x^{2}(1-x)^{2}$$

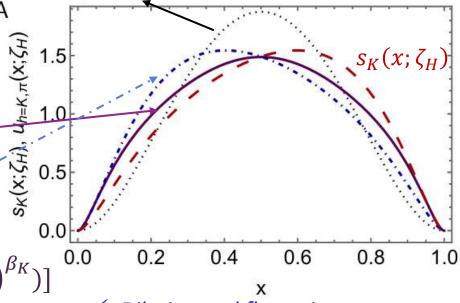
$$(1 + \gamma_{\pi}^{2} \left[([1-x)^{2}]^{\beta_{\pi}} + (x^{2})^{\beta_{\pi}} \right]$$

$$n_{\pi} = 0.858, \rho_{\pi} = 0.116, \gamma_{\pi} = 1.967, \beta_{\pi} = 5.938$$

$$u_{K}(x;\zeta_{H}) = n_{K} \ln[1 + (\frac{1}{\rho_{K}^{2}})x^{2}(1-x)^{2} (1 + \gamma_{K}^{2}(x^{2})^{\alpha_{K}}([1-x]^{2})^{\beta_{K}})]$$

$$s_{K}(x;\zeta_{H}) = u_{K}(1-x;\zeta_{H})$$


$$n_{K} = 0.444, \rho_{K} = 0.0746, \gamma_{K} = 6.276, \alpha_{K} = 0.710, \beta_{K} = 1.650$$


- In functional form is perfect for using DLY relation
- ✓ satisfy the QCD constrain $q^{\pi}(x \simeq 1; \zeta) \propto (1-x)^{2+\gamma(\zeta)}$
 - \Rightarrow EFF for mesons: $d_p^h(z \simeq 1; \zeta) \propto (1-z)^{2+\gamma(\zeta)}$ through DLY
- √ vanish at the endpoints
- ✓ no divergence for EFF

are not satisfied by some fits

ex: HKNS

hyxing@nju.edu.cn, Pion and Kaon Fragmentation Functions. Total pages (18)

- Dilation and flattening are expressions of EHM
- ✓ Skewing for kaon is expression of EHM + Higgs-Boson interference

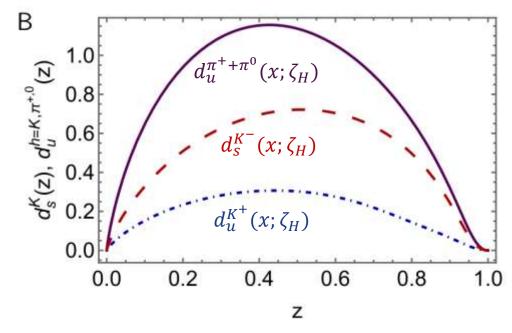
Kaon and pion parton distributions, Zhu-Fang Cui et al., Eur. Phys. J. C 80 (2020) 11, 1064

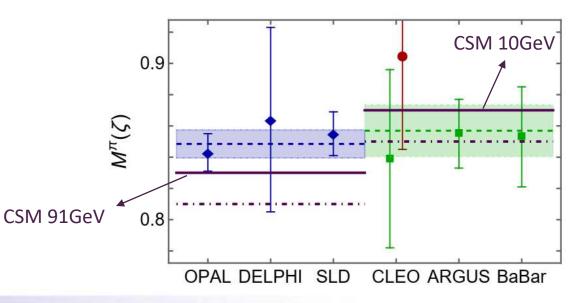
TABLE IV: Parameters determined for the pion.

function	M	α	β
$D_u^{\pi^+}$	0.546 ± 0.085	-1.100 ± 0.183	1.282 ± 0.140
$D_{\bar{u}}^{\pi^+}$	0.250 ± 0.068	-0.500 ± 0.301	5.197 ± 0.576
$D_c^{\pi^+}$	0.305 ± 0.046	-1.007 ± 0.123	3.918 ± 0.236
$D_b^{\pi^+}$	0.302 ± 0.023	-1.176 ± 0.045	5.805 ± 0.188
$D_q^{\pi^+}$	0.115 ± 0.111	1.405 ± 0.897	8.0 (fixed)

Elementary Fragmentation Functions

- ightharpoonup DLY relation $d_q^h(z;\zeta) \propto zq^h(\frac{1}{z};\zeta)$
- CSMs EFFs are given at right
- Normalised


$$\int_{0}^{1} dz \left[\frac{3}{2} d_{u}^{\pi^{+}}(z; \zeta_{\mathcal{H}}) + d_{u}^{K^{+}}(z; \zeta_{\mathcal{H}}) \right] = 1$$


Elementary probability that \boldsymbol{u} quark produces some kind of hadron is unity

> Prediction: EFF multiplicities

$$m_u^{\pi} = \int_0^1 dz \, \frac{3}{2} d_u^{\pi^+}(z; \zeta_{\mathcal{H}}) = 0.80 \,,$$

 $m_u^K = \int_0^1 dz \, d_u^{K^+}(z; \zeta_{\mathcal{H}}) = 0.20 \,.$

⇒ determine total multiplicities at all scales

Pion FF Results

- \triangleright Solve cascade equations at $\zeta_H \Rightarrow$ complete FFs
- \triangleright Use all-orders (AO) scheme to evolve solutions to scales relevant for measurements, e.g., $\zeta = \zeta_2 \coloneqq 2$ GeV
 - AO scheme is nonperturbative extension of DGLAP
- Approach guarantees that particle and momentum sum rules are preserved

$$\sum_{h} \int_{0}^{1} dz \, z D_{p}^{h}(z;\zeta) = 1$$

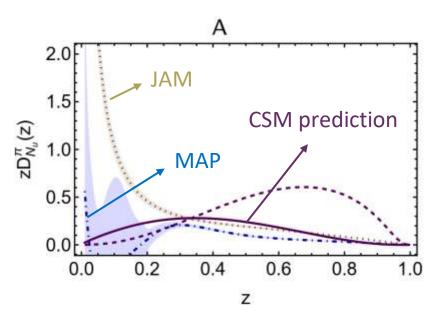
Table 2 SCI FF momentum fractions obtained from solutions of the cascade equations at the hadron scale and after evolution to $\zeta = \zeta_2 := 2 \,\text{GeV}$, following the prescription described in Sect. 4. (No entry means the fraction is zero. $c \to q \to h$ contributions are negligible in all cases.)

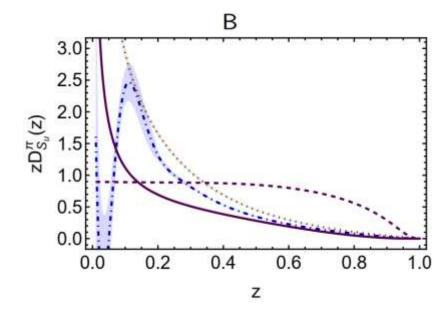
h $ $ $\langle z \rangle_{D_{QW}}^{h}$	$\pi^+ + \pi^0 + \pi^-$		K^+	
	$\frac{\zeta_{\mathcal{H}}}{0.664}$	$\zeta_2 \\ 0.433$	$\zeta_{\mathcal{H}} = 0.182$	$\frac{\zeta_2}{0.119}$
$egin{array}{l} \langle z angle_{D_{S_u^u}}^h \ \langle z angle_{D_{S_u^d}}^h \ \langle z angle_{D_{S_u^c}}^h \ \langle z angle_{D_{S_u^c}}^h \ \langle z angle_{D_{S_u^d}}^h \ \langle z angle_{D_{S_d^d}}^h \ \langle z$		0.115		0.032
$\langle z angle_{D_{S^{\delta}}}^{h}$		0.085		0.023
$\langle z angle_{D_{S^{\epsilon}}}^{h^{\sigma_{u}}}$		0.031		0.009
$\langle z angle_{D_{S^u}}^h$		0.115		0.007
$\langle z \rangle_{D_{S_d^d}}^h$	0.664	0.443	0.042	0.028
$\langle z angle_{D_{S^s}}^h$		0.085		0.005
$egin{array}{c} \langle z angle_{D_{S_d^c}}^h \ \langle z angle_{D_{S_d^c}}^h \ \langle z angle_{D_{S_s^u}}^h \ \end{array}$		0.031		0.002
$\langle z \rangle_{D_{S^u}}^h$		0.017		0.069
$\langle z \rangle_{D_{S_s^d}}^{h}$		0.017		0.069
$\langle z \rangle_{D}^n$	0.098	0.059	0.396	0.239
$\langle z angle_{D_{S_{s}^{c}}}^{h}$		0.005		0.019
$\langle z \rangle_{D_n^h}^{\zeta}$	0.083	0.083	0.023	0.023
$\langle z \rangle_{D_{g_d}^h}^{\zeta^{g_u}}$	0.083	0.083	0.005	0.005
$\langle z angle_{D_{g_s}^h}^{\zeta^{g_d}}$	0.012	0.012	0.050	0.050

Pion
$$\sum_{\text{all h}} \int_{0}^{1} dz \, z \, \left[\sum_{q} D_{S_{u}^{q}}^{h}(z;\zeta_{2}) + D_{g_{u}}^{h}(z;\zeta_{2}) \right]$$

$$\geq \text{Solvential Solve for the state of the s$$

Momentum sum rule is typically not enforced in global fitting schemes

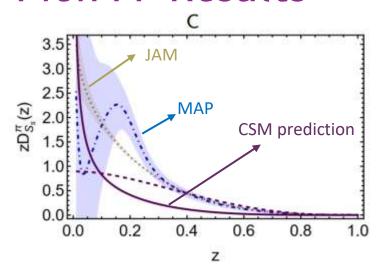

$2 { m GeV}$	NNFF	MAP	JAM	NPC
$u \to h = \pi, K$	1.21	0.67	1.20	0.70
$s \to h = \pi, K$	1.25	0.98	1.15	1.18

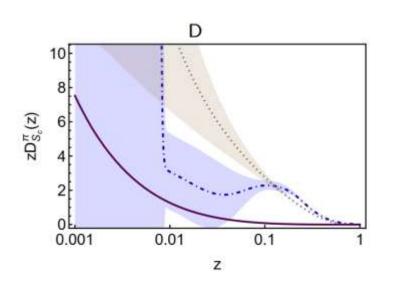

Table 2 SCI FF momentum fractions obtained from solutions of the cascade equations at the hadron scale and after evolution to $\zeta = \zeta_2 := 2 \,\text{GeV}$, following the prescription described in Sect. 4. (No entry means the fraction is zero. $c \to q \to h$ contributions are negligible in all cases.)

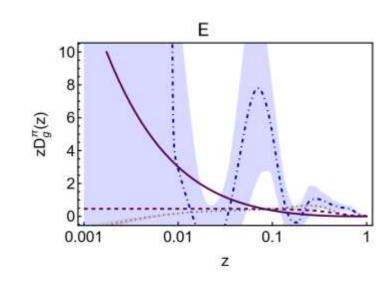
h	$\pi^+ + \pi^0 + \pi^-$		K^+	
$\langle z angle_{D_{S_{u}^{u}}}^{h}$	$\frac{\zeta_{\mathcal{H}}}{0.664}$	$\zeta_2 \\ 0.433$	$\zeta_{\mathcal{H}} = 0.182$	$\frac{\zeta_2}{0.119}$
$\langle z \rangle_{D_{S_u^d}}^h$		0.115		0.032
$\langle z angle_{D_{S^s}}^h$		0.085		0.023
$\langle z angle_{D_{S_u^{\varepsilon}}}^h \ \langle z angle_{D_{S_u^{\varepsilon}}}^h \ \langle z angle_{D_{S_u^{\varepsilon}}}^h \ $		0.031		0.009
$\langle z angle_{D_{S^u}}^h$		0.115		0.007
$\langle z \rangle_{D_{S_d^u}}^h \ \langle z \rangle_{D_{S_d^d}}^h \ \langle z \rangle_{D_{S_d^d}}^h \ $	0.664	0.443	0.042	0.028
$\langle z \rangle_{D_{C^{\delta}}}^{n}$		0.085		0.005
$\langle z angle_{D_{S_s^d}}^h \ \langle z angle_{D_{S_s^$		0.031		0.002
$\langle z angle_{D_{S^{u}}}^{h^{-a}}$		0.017		0.069
$\langle z \rangle_{D_{S^d}}^h$		0.017		0.069
$\langle z angle_{D_{S_{s}^{s}}}^{h} \ \langle z angle_{D_{S_{s}^{s}}}^{h} \ \langle z angle_{D_{S_{s}^{s}}}^{h} \ $	0.098	0.059	0.396	0.239
$\langle z angle_{D_{S^{\epsilon}}}^{h}$		0.005		0.019
$\langle z \rangle_{D^h}^{\zeta}$	0.083	0.083	0.023	0.023
$\langle z \rangle_{D_{g_d}^h}^{\zeta^{g_u}}$	0.083	0.083	0.005	0.005
$\langle z \rangle_{D_{q_s}^h}^{\zeta^{s_d}}$	0.012	0.012	0.050	0.050

Pion FF Results

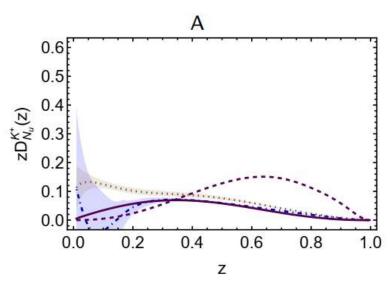
 \triangleright A, B $u \rightarrow \pi^{+,0}$ (favoured) nonsinglet and singlet.

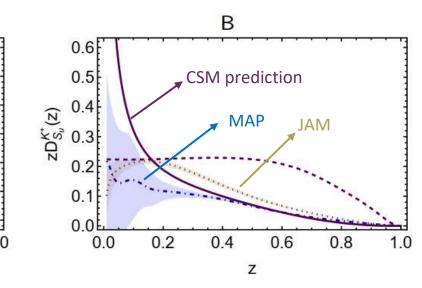

- $zD_N = \frac{3}{2}z[D_q^{\pi^+}(z) D_{\bar{q}}^{\pi^+}(z)]$
- Agreement only on z > 0.5, *i.e.*, valence quark domain.
- $zD_S = \frac{3}{2} z[D_q^{\pi^+}(z) + D_{\bar{q}}^{\pi^+}(z)]$
- JAM nonsinglet FF result (zD_N) exhibits unexpected & unphysical divergence on $z \simeq 0$.

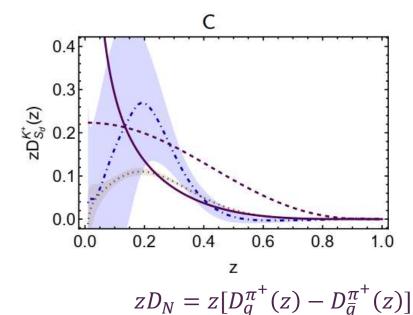

This is the domain of glue and sea dominance; so, $zD_N = \frac{3}{2} z[D_q^{\pi^+}(z) - D_{\bar{q}}^{\pi^+}(z)]$ should vanish.

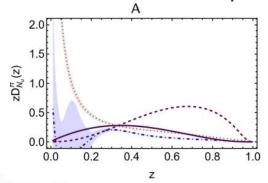

- MAPFF fits highlight that FFs are practically unconstrained on $z \lesssim 0.2$.

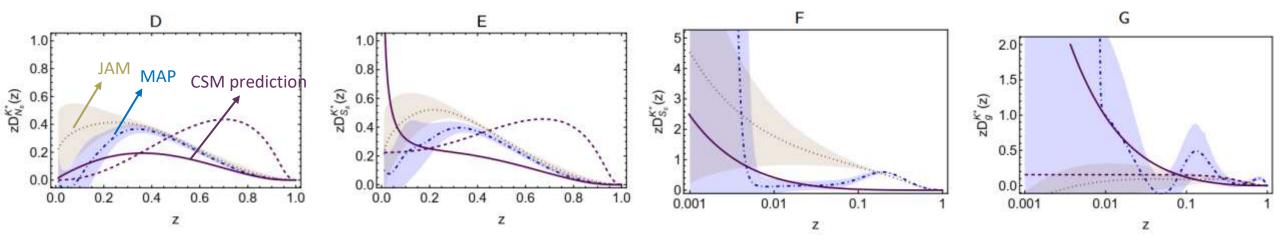
Pion FF Results






- ightharpoonup C $s \to \pi$ (unfavoured).
 - One might say there is qualitative agreement on the far valence domain, but only in the sense that this FF is small.
 - Otherwise, any agreement is only the result of an accidental curve crossing.
- \triangleright D, E c, g $\rightarrow \pi$ (unfavoured).
 - There is **no** agreement on these FFs, which are very poorly constrained by data.
 - MAPFF: practically unconstrained on $z \leq 0.2$.
 - JAM: negative contribution on z<0.01, which is unphysical.


Kaon FF Results


- \triangleright A, B $u \rightarrow K$ (favoured) nonsinglet and singlet.
 - Agreement on z > 0.4, *i.e.*, valence quark domain.
 - JAM nonsinglet FF result (zD_N) is finite and nonzero on $z \simeq 0$, again, unexpected. Singlet FF result (zD_S) is also finite and nonzero, in contradiction of its $u \to \pi$ result and our prediction.
- ightharpoonup C d \rightarrow K (favoured) singlet.
 - qualitative agreement on the far valence domain.
 - JAM and MAPFF fits produce nonzero finite values on $z \simeq 0$.

 $zD_S = z[D_a^{\pi^+}(z) + D_{\bar{a}}^{\pi^+}(z)]$

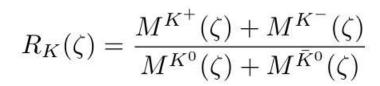
Kaon FF Results

- \triangleright D, E s \rightarrow K (favoured) nonsinglet and singlet.
 - Agreement is seen on $z \gtrsim 0.7$; but nothing beyond that.
 - Both JAM and MAPFF produce nonzero finite values on $z \simeq 0$.

$$zD_N = z[D_q^{\pi^+}(z) - D_{\bar{q}}^{\pi^+}(z)]$$

$$zD_S = z[D_q^{\pi^+}(z) + D_{\bar{q}}^{\pi^+}(z)]$$

- ightharpoonup F, G c, g ightharpoonup K (unfavoured).
 - Again, there is <u>no</u> agreement on these FFs, which are very poorly constrained by data.
 - JAM and MAP: c quark FF is divergent, inconsistent with the other FFs.


Hadron Jet Multiplicities

Relative multiplicity of charged and neutral kaons in $e^+ + e^- \rightarrow h + X$

> Data exist, most recently from BESIII, last year

Table 4 SCI and CSM predictions for the ζ -dependence of the relative multiplicity of charged and neutral kaons, Eq. (52), (53). Also listed are empirical estimates from Refs. [67–71]. (Dimensioned quantities in GeV.)

Predictions	ζ	R_K
SCI	3.05	1.73
	3.67	1.67
	10	1.31
	91.2	1.038
	189	1.022
Predictions	ζ	R_K
CSM	3.05	1.49
	3.67	1.43
	10	1.20
	91.2	1.035
	189	1.022
Measurements	ζ	R_K
[67, BESIII]	3.67	1.40(20)
[68, 69, TPC]	29	1.11(16)
[70, TASSO]	34	1.19(14)
[71, DELPHI]	133	1.04(13)
.516 - 58 - 18 ⁵ A	161	1.08(26)
	183	1.56(21)
	189	1.50(18)

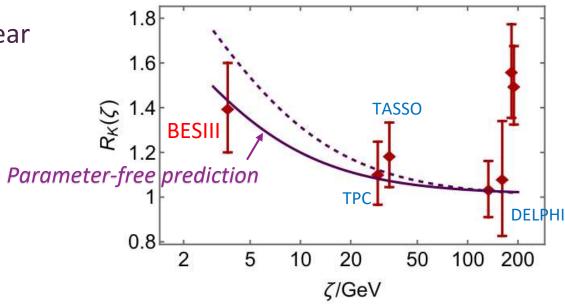


Fig. 7 SCI and CSM predictions for the ζ -dependence of the relative multiplicity of charged and neutral kaons, Eq. (52), (53). Data are empirical estimates from Refs. [67–71]. See also Table 4.

- ✓ Predictions for hadron jet multiplicities reveal SU(3)flavour symmetry breaking in $R_K(\zeta)$.
- ✓ Breaking significant at reaction energy scales $\zeta \approx 3m_p$, but decreases in size with increasing reaction energy.

Summary

- > A unified treatment of the pion, kaon DFs and FFs was accomplished.
- ➤ Give insights into the link between two important phenomena in QCD: EHM and confinement.
- ➤ Continuum predictions provide coherent picture of fragmentation across all parton types ⇒ Through comparison with fits:
 - largely model dependent, mutually inconsistent
 - QCD constrain is not satisfied
 - momentum sum rule is not enforced, some are larger, some are smaller
 - unconstrained on small z domain
 - unexpected & unphysical behaviour on $z \simeq 0$
- This must improve if anything objective is to be learnt from modern and anticipated facilities.

 The must improve if anything objective is to be learnt from modern and anticipated facilities.

 Thought your facilities.

