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Structure of Pion, Kaon, and Nucleon

➢ Form	factor:	the	closest	thing	we	have	to	a	snapshot,	
the	size,	shape	and	makeup	of	the	hadron	

➢ 1D	picture	of	how	quarks	move	within	the	hadron	

➢ A	multidimensional	view	of	the	hadron	structure

✓ Electromagnetic	form	factor

✓ Two-photon	transition	form	factor

✓ Gravitational	form	factor

✓ Distribution	amplitude	(DA)

✓ Distribution	function	(DF)

✓ Transverse	momentum	dependent	distribution	function	(TMD)	

✓ Generalized	parton	distribution	(GPD)	

etc..

pion

proton
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Electromagnetic and gravitational form factors

etc..

➢ Electromagnetic	form	factor:

✓ Electric	charge	radius

✓ Electric	charge	distribution	

➢ Gravitational	form	factor:

✓ D-term:	last	global	unknown	
property	of	hadron


✓ Mass	radius

✓ Mechanical	radius

✓ Shear	force	distribution

✓ Pressure	distribution	
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Distribution Amplitude (DA) and pion electromagnetic form factor

➢ Perturbative	QCD	predicts	charged-pion	elastic	form	factor

4

∃Q0 > ΛQCD | Q2Fπ(Q2)
Q2>Q2

0≈ 16παs(Q2)f 2
πw2

φ ,

➢ 	is	the	meson’s	dressed-valence-quark	distribution	amplitude	(DA).	The	value	of	 	is	
not	predicted	by	pQCD.
φπ(x) Q0

wφ =
1
3 ∫

1

0
dx

1
x

φπ(x) ,

➢ Asymptotic	DA	at	 ,	i.e.,	very	large	values	of	 ,Λ2
QCD/Q2 ≃ 0 Q2

φπ(x) = 6x(1 − x) ,
➢ then	 ,	and	wφ = 1

Q2Fπ(Q2)
Q2→∞

≈ 16παs(Q2)f 2
π ,

➢ 	is	the	leptonic	decay	constant	of	pion,	 	is	the	is	the	leading-order	strong	running-coupling.fπ αs(Q2)

No	free	pion	target	-	use	”virtual	pion	cloud”	of	the	proton.

G.	P.	Lepage	and	S.	J.	Brodsky,	Phys.	Rev.	D	22,	2157	(1980).		A.	V.	Efremov	and	A.	V.	Radyushkin,	Phys.	Lett.	B	94,	245	(1980).



➢ Figure	is	taken	from	JLab	22	GeV	
white	paper	


➢ Existing	data	(blue,	black,	yellow,	

green)	and	projected	uncertainties	

for	future	data	on	the	pion	form	

factor	from	JLab	(12	GeV:	cyan;	22	

GeV:	red)	and	EIC	(black),	in	

comparison	to	a	variety	of	hadronic	

structure	models.
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Pion electromagnetic form factor

JLab	22	GeV	white	paper:	Eur.	Phys.	J.	A	60	(2024)	9,	173		
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Gravitational form factor

➢ Gravitational	form	factor	(GFFs)	are	related	to	the	Mellin	moment	of	the	chiral-even	GPDs

➢ GPD	measurements:	Deeply	virtual	Compton	scattering	(DVCS),	Time-like	Compton	scattering	
(TCS),	Deeply	virtual	Meson	production	(DVMP)	etc..

∫
1

−1
dx x Hq(x, ξ, Q2) = Aq(Q2) + ξ2Dq(Q2) ,

➢ GFFs	may	be	probed	indirectly	in	these	exclusive	processes.

Burkert,	Elouadrhiri,	Girod,	Lorcé,	Schweitzer,	Shanahan,	Rev.	Mod.	Phys.	95	(2023)	4,	041002.
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Electromagnetic and Gravitational form factors

TikZ-Feynman
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➢ Interactions	between	hadron	and	different	probes

✓ Electromagnetic	probe:	photon	

✓ Gravitational	probe:	graviton	

➢ Dressed	hadron	+	probe	vertex

✓ Dressed	quark	photon	vertex

✓ Dressed	quark	graviton	vertex
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Dressed quark photon vertex

pk

q = k − p➢ Longitudinal	part	of	the	quark	photon	vertex	is	constrained	by	the	
Ward-Green-Takahashi	(WGT)	identity:

qμiΓμ(k, p) = S−1(k) − S−1(p) ,

Γμ(k, p) = ΓL
μ(k, p) + ΓT

μ(k, p) ,

➢ In	general,	quark	photon	vertex	can	be	divided	into	longitudinal	and	
transverse	parts,	including	twelve	independent	tensor	structures:

✓ Four	tensors	in	longitudinal	parts	 	and	
eight	tensors	in	transverse	parts:	 .

{Lj
μ(k, p), j = 1,…,4}

{Tj
μ(k, p), j = 1,…,8}

Qin,	Chang,	Liu,	Roberts,	Schmidt,	Phys.	Lett.	B	722	(2013)	384-388

✓ Ball-Chiu	vertex:

iΓBC
ν (k+, k−) = iγνΣA±

+ 2ikνγ ⋅ k ΔA±
+ 2kνΔB±

,
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Dressed quark photon vertex

➢ 	is	a	matrix-valued	regular	function	(free	of	kinematic	singularities	for	real	arguments).ΓBC
ν

➢ Transverse	part	can	be	solved	with	the	inhomogeneous	vector	Bethe-Salpeter	equation:

➢ Transverse	part	exhibits	timelike- poles,	one	at	the	mass-
squared	of	each	neutral	vector	meson	supported	by	the	
interaction.		The	lightest	such	state	is	the	 -meson.

Q2

ρ0

Γμ(pout, pin; Q) = Z2 γμ + ∫k
K(pout, pin; kout, kin)S(kout) Γμ(kout, kin; Q) S(kin) ,

Γμ(pout, pin) ∼
ΓV

μ (pout, pin) fV MV

Q2 + M2
V

,

➢ The	fact	that	the	dressed	 -vertex	exhibits	these	vector	
meson	poles	explains	the	success	of	naive	vector-meson-
dominance	(VMD)	models.

qq̄γ

Richard	Williams,	Phys.	Lett.	B	798	(2019)	134943

Bhagwat,	Maris,	Phys.	Rev.	C	77	(2008)	025203.
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Dressed quark graviton vertex

➢ Longitudinal	part	+	transverse	part

Γg
μν(k, Q) = ΓgM

μν(k, Q) + ΓgT
μν(k, Q) ,

➢ Longitudinal	part	is	constrained	by	the	Ward-Green-Takahashi	

QμiΓg
μν(k, Q) = S−1(k+)k−ν − S−1(k−)k+ν .

➢ Transverse	part	can	be	solved	with	the	inhomogeneous	tensor	Bethe-Salpeter	equation

iΓg
μν(k+, k−) = Z2[iγμkν − δμν(iγ ⋅ k + Z0

mmζ)] + Z2
2 ∫

Λ

dl
K(k − l)[S(l+)iΓg

μν(l+, l−)S(l−)] ,

➢ and	it	has	scalar	and	tensor	poles −f𝕊Γ𝕊(k; Q)
1 + m2

𝕊/Q2
Q2+m2

𝕊≃0

,
−f𝕋Γ𝕋

μν(k; Q)
1 + m2

𝕋 /Q2
Q2+m2

𝕋≃0

,

R.	Brout,	F.	Englert.	Phys.	Rev.	141(4),	1231–1232	(1966)	


Yin-Zhen	Xu	et	al.	Eur.	Phys.	J.	C	84	(2024)	2,	191
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Gravitational form factors of pion

➢ The	expectation	value	of	the	energy-momentum	tensor	in	the	pion:
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Λg
μν(P, Q) = 2PμPνθπ

2 (Q2)+ 1
2 [Q2δμν − QμQν]θπ

1 (Q2) + 2m2
πδμνc̄π(Q2) ,

➢ 	are	the	in-pion	mass	and	pressure	distribution	form	
factors.	The	relations	follow	from	symmetries:
θπ

2,1

θπ
2 (0) = 1 , θπ

1 (0) m2
π=0= 1 , c̄π(Q2) ≡ 0 .

➢ The	pressure	distribution	radius	is	greater	than	both	
the	electromagnetic	and	mass	radii:

rθ1
π > rF

π > rθ2
π , rθ2

π /rF
π = 0.74, rF

π /rθ1
π ≈ 0.79

Yin-Zhen	Xu	et	al.	Eur.	Phys.	J.	C	84	(2024)	2,	191



12

Gravitational form factors of kaon
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➢ For	pion,	direct	rainbow	ladder	(RL)	results	are	employed	within	 ,	whilst	beyond	
this	region,	perturbation	theory	integral	representation	(PTIRs)	is	used.	For	kaon,		RL	is	applied	
within	 .

Q2 ≲ 2GeV2

Q2 ≲ 1.7GeV2

➢ u	quark	in	Kaon	elastic	electric	form	factor	is	
almost	indistinguishable	from	the	u	quark	in	
	form	factor,	π Fπ

➢ There	is	a	marked	difference	between	the	 	
in	Kaon	and	u	in	Kaon	electromagnetic	
form	factors:	 ,	A	similar	
distinction	is	expressed	in	the	ratio	of	 	in	
Kaon	and	u	in	Kaon	valence	parton	DFs.

s̄

Fs̄
K(Q2), Fu

K(Q2)
s̄
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Gravitational form factors of kaon

➢ 	θK
1 (0) = 0.77
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➢ ,	so	 .	θKu
2 (0) = 0.39, θKs

2 (0) = 0.61 θK
2 (0) = 1

➢ The	ordering	of	kaon	radii	is	the	same	
as	that	found	for	the	pion:	
rθ1
K > rF

K > rθ2
K

➢ In	each	case,	the	net	kaon	radius	is	
smaller	than	the	kindred	pion	radius
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Gravitational form factors of pion and kaon

➢ Pseudoscalar	meson	pressure	and	shear	force	distributions	may	be	defined.

➢ Physical	interpretation:	meson	pressures	are	
positive	and	large	on	the	neighbourhood	 ,	
whereupon	the	meson's	dressed-valence	
constituents	are	pushing	away	from	each	other.

r ≃ 0

➢ With	increasing	separation,	the	pressure	switches	
sign	(von	Laue	condition)	indicating	a	transition	to	
the	domain	wherewithin	confinement	forces	
exert	their	influence	on	the	pair.

➢ The	zeros	-	confinement	radius	(in	fm):	
rπ
c = 0.39(1), rK

c = 0.26(1), rKu
c = 0.30(1), rKs̄

c = 0.25(1)
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Gravitational form factors of pion and kaon
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➢ The	Kaon	profile	is	more	compact,	so	the	
associated	peak	core	pressure	is	higher	than	
in	the	pion:	the	ratio	is .≈ 1.5

��� ��� ��� ���

-����
����
����
����
����
����
����

� [��]

��
� �

(�)
[�
��

/��
] �=�

�=π
�-��-�
�-��-�

➢ The	shear	pressures	are	an	indicator	of	the	
strength	of	deformation	forces	within	the	meson.	

➢ Shear	forces	are	maximal	in	the	neighbourhood	
upon	which	the	pressure	changes	sign.

➢ Total	pion	and	kaon	shear	forces:	

	

the	π	result	is	greater.
∫

∞

0
dr r2sK(r) = 0.77∫

∞

0
dr r2sπ(r) .
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Gravitational form factors of proton

➢ The	proton	(nucleon)	has	three	gravitational	form	factors:

mNΛNg
μν (Q) = − Λ+(pf )[KμKνA(Q2) + iK{μσν} ρQρJ(Q2)+ 1

4 (QμQν − δμνQ2)D(Q2)]Λ+(pi) ,

➢ A	is	the	mass	distribution	form	factor;	J	relates	to	spin	distribution;	D	relates	to	pressure	and	
shear	force	distributions.

➢ Symmetries	entail	 .	 	is	the	last	unknown	global	property.A(0) = 1, J(0) = 1/2 D(0)

➢ Species	decomposition:	

✓Total	GFFs	are	scale	independent,	but	species	decomposition	of	GFFs	are	scale	dependent.	

✓An	all-orders	(AO)	evolution	scheme	is	developed.	


✓For	any	quark	or	gluon	sector	contributions,	 ,	 ,	the	species	decomposition	
contribution	is	 ,	where	 	is	the	parton	species	light-front	momentum	fraction	
in	the	hadron	at	 .	We	take	 	GeV.

Fq(Q2; ζ) Fg(Q2; ζ)
⟨x⟩p

ζ × F(Q2) ⟨x⟩p
ζ

ζ ζ = 2
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Gravitational form factors of proton
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➢ Our	results	for	the	species	separated	form	factors	compared	with	available	lattice	QCD	results:	
in	all	cases,	they	agree	within	mutual	uncertainties.	

D.C.	Hackett,	D.A.	Pefkou,	P.E.	Shanahan.	Phys.	Rev.	Lett.	132(25),	251904	(2024);		Zhao-qian	Yao	et	al.	Eur.	Phys.	J.	A	61	(2025)	5,	92.
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Gravitational form factors of proton
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➢ Light	quark	alone:	 .	
Inference	from	available	DVCS	data	yields	

[Burkert:2018bqq]	

Du+d(0; ζ2) = − 1.73(5)

Du+d(0; ζ) = − 1.63(29)

➢ D	term:	 .D(0) = − 3.11(1)

➢ Lattice	QCD	results:	

					z-expansion:	−3.87(97);	Dipole:	−3.35(58)	

V.D.	Burkert,	L.	Elouadrhiri,	F.-X.	Girod.	Nature	557(7705),	396–399	(2018);	
D.C.	Hackett,	D.A.	Pefkou,	P.E.	Shanahan.	Phys.	Rev.	Lett.	132(25),	251904	
(2024).
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Gravitational form factors of proton

➢ All	order	evolution	approach	
yields	that,	for	each	form	
factor,	the	 	contribution	ratio	
gluon:total-quark	is	a	fixed	
number	(constant,	
independent	of	 ),	viz.	

.	

ζ2

Q2

g(Q2)/q(Q2) = 0.71(4)

Herein: 0.712 (χ2=1.4)
Best fit: 0.820 (χ2=0.67)
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Herein: 0.712 (χ2=0.80)
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Herein: 0.712 (χ2=0.30)
Best fit: 0.628 (χ2=0.28)
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➢ Within	large	uncertainties,	
available	lattice	QCD	results	
are	compatible	with	this.



20

Gravitational form factors of proton

➢ The	pion	peak	values	are	roughly	twice	those	in	the	
proton,	and	such	pressures	are	an	order	of	magnitude	
greater	than	are	expected	at	the	core	of	neutron	stars.	
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FIG.	15	in	Burkert,	Elouadrhiri,	Girod,	Lorcé,	Schweitzer,	Shanahan,	
Rev.	Mod.	Phys.	95	(2023)	4,	041002.

Polyakov,	Schweitzer.	Int.J.Mod.Phys.A	33	(2018)	26,	1830025

➢ Breit	frame	density	profiles	(energy,	pressure,	shear	and	
normal	force	distributions)	via	appropriate	three-
dimensional	Fourier	transforms.	
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Gravitational form factors of proton

➢ Nucleon	mass	and	mechanical	radii	can	be	defined	in	terms	of	 ,		and	Normal	force	distribution	ϵ(r) F∥(r)

⟨r2⟩mass =
∫ d3r r2ϵ(r)
∫ d3rϵ(r)

, ⟨r2⟩mech =
∫ d3r r2F∥(r)

∫ d3rF∥(r)
.

➢ These	expressions	are	equivalent	to	(mechanical	radius	is	not	related	to	the	slope	of	a	form	factor):

⟨r2⟩mass = −6
d
dt

A(t)
t=0

− 3
D(0)
2m2

N

1
A(0)

, ⟨r2⟩mech =
6

∫ ∞
0

dt [D(t)/D(0)]
,

rmass = 0.81(5)rch , rmech = 0.72(2)rch ,

➢ We	obtain	( fm	is	the	proton	charge	radius	calculated	using	the	same	framework):rch = 0.887(3)

➢ Species	decompositions	at	 	GeV	ζ = 2

rq
mass = 0.62(4)rch, rg

mass = 0.52(3)rch, rq
mech = 0.55(2)rch, rg

mech = 0.47(2)rch .



Summary and Outlook

➢Summary


✓Using	a	Continuum	Schwinger	Function	Methods,	presented	a	calculation	of	the	Gravitational	Form	Factors	

(GFFs)	of	Pion,	Kaon,	and	Nucleon.	


✓Pion	and	kaon	GFFs:	graviton	+	quark	vertex,	 ;	Kaon	density	and	pressure	profiles	are	more	

compact	than	pion’s.	Pion	confinement	radius	 	fm.	Kaon	confinement	radius	is	33%	smaller.	


✓Proton	GFFs:	A	universal	ratio	for	nucleon's	GFFs:	glue/quark	 ;	Near-core	pressure	in	pion	is	twice	that	

in	proton,	both	far	exceed	neutron	star	pressures.	Mechanical	radius	<	mass	radius	<	charge	radius.


✓Future	high-luminosity,	high-energy	facilities	(JLAB	at	22	GeV,	EIC,	and	EicC)	are	poised	to	measure	these	GFFs.


➢Outlook


Hadron	structure,	such	as	transverse	momentum	dependent	distribution	(TMD),	generalized	parton	distribution	

(GPD),	fragmentation	function	(FF),	etc..

rθ1
π > rF

π > rθ2
π

≈ 0.39

≈ 0.71

22
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Thank	you!


