Search for Static and Oscillating EDMs in Storage Rings Paolo Lenisa University of Ferrara and INFN, Italy on behalf of the JEDI Collaboration SPIN2025 26th International Symposium on Spin Physics Qingdao (China), September 26th, 2025 ## Motivation 2/54 ## **Question 1: Why is our Universe Made of Matter?** #### **Big-bang** Equal amounts of matter and antimatter #### Now - Universe dominated by matter: $\eta = \frac{n_B n_{\overline{B}}}{n_{\gamma}}$ - Measured: $\eta \approx 10^{-10}$ Bennet et al., Astrophys. J. Suppl. 148 (2003); Barger et al., PLB 566 (2003) - SM prediction: $\eta \approx 10^{-18}$ Bernreuther et al., Lect. Notes Phys. 591 (2002) ## **Question 1: Why is our Universe Made of Matter?** #### **Big-bang** Equal amounts of matter and antimatter #### Now - Universe dominated by matter: $\eta = \frac{n_B n_{\overline{B}}}{n_{\gamma}}$ - Measured: $\eta \approx 10^{-10}$ Bennet et al., Astrophys. J. Suppl. 148 (2003); Barger et al., PLB 566 (2003) - SM prediction: $\eta \approx 10^{-18}$ Bernreuther et al., Lect. Notes Phys. 591 (2002) #### **Beyond the Standard Model** Additional sources of CP violation beyond CKM mechanism required to explain the matter-antimatter asymmetry. Sakharov, Soviet Physics Uspekhi 5 (1991) #### **Question 2: What is the Nature of Dark Matter?** ### **Experimental evidence** - Rotation curves of galaxies Vera Rubin & Kent Ford, The Astrophysical Journal, 159 (1970) - Gravitational lensing Douglas Clowe et al, Astroph. Journal Letters, 648 (2006) - Asymmetry in CMB Planck Collaboration: Astronomy & Astrophysics 641, A6 (2020) ### **Question 2: What is the Nature of Dark Matter?** ## **Experimental evidence** - Rotation curves of galaxies Vera Rubin & Kent Ford, The Astrophysical Journal, 159 (1970) - Gravitational lensing Douglas Clowe et al, Astroph. Journal Letters, 648 (2006) - Asymmetry in CMB Planck Collaboration: Astronomy & Astrophysics 641, A6 (2020) #### What is Dark Matter made of? - WIMPs, Sterile neutrino, Axions? Axion like particles? - Implies new physics beyond the Standard Model ## **Electric Dipole Moment (EDM)** - Permanent separation of positive and negative charge in the particle volume - Fundamental particles property (like mag. moment, mass, charge) - Axion field \rightarrow oscillating EDM: $d = d_{DC} + d_{AC}cos(\omega_a t + \phi_a); m_a c^2 = \hbar \omega_a$ ## $\mathcal T$ and $\mathcal P$ Violations in EDMs $$H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} - d\frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$ - $T: H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$ - \mathcal{P} : $H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$ ## Implications of CP violation - EDMs violate both $\mathcal T$ and $\mathcal P$ symmetries $(\stackrel{\mathit{CPT}}{=} \mathcal C \mathcal P)$ - Nonzero EDM would indicate new CP-violating sources beyond SM - Essential to explain matter-antimatter asymmetry ## **Static EDM Upper Limits** #### **Current status** No nonzero EDM has been measured so far #### **Direct measurements** - Electron: no direct measurement; strongest limit from *HfF*⁺ molecule. - Proton no direct measurement; strongest limit from ¹⁹⁹₈₀ Hg. #### **Theoretical considerations** EDM of single particle not sufficient to pinpoint the source of CP violation ## **Complementarity of EDM Measurements** J. de Vries Lenisa (Ferrara) EDM SEARCH SPIN2025 8/54 ## **Precision Takes Time: the Neutron EDM Limit** ## **Precision Takes Time: the Neutron EDM Limit** #### Historical note - Purcell and Ramsey (1950): "The question of the possible existence of an electric dipole moment of a nucleus or of an elementary particle ... becomes a purely experimental matter" - First measurement of neutron EDM carried out in the early 1950s - Published only in 1957, after Wu's discovery of PV in weak interaction H.J. Smith, E.M. Purcell and N.F. Ramsey, Phys. Rev. 108, 1957 ## **Axions and Axion-Like Particles (ALPs)** ## **The Strong CP Problem** - QCD allows a CP-violating term: $\mathcal{L}_{\theta} = \theta \, \frac{g_s^2}{32\pi^2} \, G_{\mu\nu}^a \tilde{G}^{a\mu\nu}$ - ullet This would induce a large neutron EDM, but experiments find it \simeq 0. - \Rightarrow Implies an extremely small θ : the strong CP problem. ## **Axions and Axion-Like Particles (ALPs)** ## **The Strong CP Problem** - QCD allows a CP-violating term: $\mathcal{L}_{\theta} = \theta \, \frac{g_s^2}{32\pi^2} \, G_{\mu\nu}^a \tilde{G}^{a\mu\nu}$ - ullet This would induce a large neutron EDM, but experiments find it $\simeq 0$. - \Rightarrow Implies an extremely small θ : the strong CP problem. #### **Peccei-Quinn Mechanism and Axions** - Peccei-Quinn dynamically drives $\theta \to 0$ Peccei, Quinn, PRL 38 (1977); - Predicts a new pseudoscalar particle: the axion wilczek, PRL 40 (1978) - Generalizations ⇒ Axion-Like Particles (ALPs) Kim, PRL 43 (1979); Dine et al, PLB 104 (1981) ## **Axions and Axion-Like Particles (ALPs)** ## **The Strong CP Problem** - QCD allows a CP-violating term: $\mathcal{L}_{\theta}=\theta\, \frac{g_s^2}{32\pi^2}\, G_{\mu\nu}^a \tilde{G}^{a\mu\nu}$ - ullet This would induce a large neutron EDM, but experiments find it \simeq 0. - \Rightarrow Implies an extremely small θ : the strong CP problem. #### **Peccei-Quinn Mechanism and Axions** - ullet Peccei-Quinn dynamically drives heta o 0 Peccei, Quinn, PRL 38 (1977); - Predicts a new pseudoscalar particle: the axion wildcek, PRL 40 (1978) - Generalizations ⇒ Axion-Like Particles (ALPs) Kim, PRL 43 (1979); Dine et al, PLB 104 (1981) #### **Connection to Dark Matter** - Axion/ALPs are excellent dark-matter candidates: - Very light, very stable; extremely weakly interacting #### **Experimental Searches** - Large effort to detect axion/APLs - Haloscopes (galactic DM axions); P. Sikivie (1983); CAST-CAPP, CAST-RADES, ... - ► Helioscopes (solar axions); P. Sikivie, CAST; IAXO ... - Light-shining-trough wall experiments (photon coupling); P. Sikivie; ALPS; CROWS... Lenisa (Ferrara) EDM SEARCH SPIN2025 10/54 ## **Axion Coupling - Axion Induced Oscillations** $$\mathcal{L}: -\frac{\alpha}{8\pi} \frac{C_{\gamma}}{f_{a}} \mathbf{a} F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad -\frac{\alpha_{s}}{8\pi} \frac{C_{G}}{f_{a}} \mathbf{a} G^{b}_{\mu\nu} \tilde{G}^{b,\mu\nu} \qquad -\frac{1}{2} \frac{C_{N}}{f_{a}} \partial_{\mu} \mathbf{a} \tilde{\Psi}_{I} \gamma^{\mu} \gamma^{5} \Psi_{I}$$ $$-\frac{\alpha}{2} -\frac{\alpha_{s}}{f_{a}} \mathbf{a} G^{b}_{\mu\nu} \tilde{G}^{b,\mu\nu} \qquad -\frac{1}{2} \frac{C_{N}}{f_{a}} \partial_{\mu} \mathbf{a} \tilde{\Psi}_{I} \gamma^{\mu} \gamma^{5} \Psi_{I}$$ oscillating Electric Dipole Moment (oEDM) axion wind term #### **Axion-field description** • For low axion masses, if axions saturate dark matter they can be described as: $a(t) = a_0 cos(\omega_a(t) + \phi_a); m_a c^2 = \hbar \omega_a$; coupling scales as $\propto \frac{1}{f_a} \propto m_a$ ## **Axion Coupling - Axion Induced Oscillations** #### **Axion-field description** For low axion masses, if axions saturate dark matter they can be described as: $$a(t) = a_0 cos(\omega_a(t) + \phi_a); m_a c^2 = \hbar \omega_a;$$ coupling scales as $\propto \frac{1}{f_a} \propto m_a$ ## **Axion Coupling - Axion Induced Oscillations** #### **Axion-field description** • For low axion masses, if axions saturate dark matter they can be described as: $$a(t)=a_0cos(\omega_a(t)+\phi_a); m_ac^2=\hbar\omega_a$$; coupling scales as $\propto \frac{1}{f_a}\propto m_a$ #### **ALP-induced spin-interaction** - Gluon fields ⇒ oscillating EDMs; Graham et al., PRD 84 (2011) - Fermion coupling with axion field gradient (pseudomagnetic field) ⇒ axion wind effect; Graham et al., PRD 88 (2013) ## Measurement concept in a storage ring - Use spin procession of polarized beam in a storage ring - Look for resonance signatures ## **Axion Search with Storage Ring EDM Method** S. P. Chang et al. Phys. Rev. D 99, 083002 Experimental limits on axion-gluon coupling from oscillating EDM searches. ## **EDM Experiments/Activities around the World** ## **World Map of Current Experiments on Wavy Dark Matter** C. O'Hare, doi:10.5281/zenodo.3932430, https://github.com(cajohare/AxionLimits ## Experimental methods 16/54 ## **Measuring the EDM of Neutral Particles** ## Spin Precession in E and B Fields $$ec{\Omega} = \Omega_{\mathsf{MDM}} \pm \Omega_{\mathsf{EDM}} = rac{\mu \, \mathsf{B} \, \pm \, d \, \mathsf{E}}{|ec{\mathcal{S}}|}$$ Orders of Magnitude for $d_n = 1 \times 10^{-26} \, e \cdot \mathrm{cm}$ - In B_{earth} : $\Omega \approx 9,000 \, \text{s}^{-1}$ - In $E=10^7\,\mathrm{V/m}$: $\Omega_{EDM}\approx 3\times 10^{-6}\,\mathrm{s^{-1}}$ ## **Measuring the EDM of Neutral Particles** ### Spin Precession in E and B Fields $$ec{\Omega} = \Omega_{\mathsf{MDM}} \pm \Omega_{\mathsf{EDM}} = rac{\mu \, \mathsf{B} \, \pm \, \mathsf{d} \, \mathsf{E}}{|ec{\mathcal{S}}|}$$ ## Orders of Magnitude for $d_n = 1 \times 10^{-26} \, e \cdot \mathrm{cm}$ • In B_{earth} : $\Omega \approx 9,000 \, \text{s}^{-1}$ • In $E = 10^7 \, \text{V/m}$: $\Omega_{EDM} \approx 3 \times 10^{-6} \, \text{s}^{-1}$ ## **Measuring the EDM of Charged Particles** More challenging ⇒ requires dedicated storage rings. ## **Spin-Precession of Charged Particles in Storage Rings** • Equation of motion for spin vector \overrightarrow{S} in the rest frame of the particle: $$\frac{\overrightarrow{ds}}{\overrightarrow{dt}} = \overrightarrow{\Omega} \times \overrightarrow{s} = \overrightarrow{\mu} \times \overrightarrow{B} + \overrightarrow{d} \times \overrightarrow{E}$$ Spin-precession relative to the direction of motion: $$[(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM}) - \overrightarrow{\Omega}_{cycl}] = \frac{-q}{m} \left[\underbrace{G\overrightarrow{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\overrightarrow{v} \times \overrightarrow{E}}_{=\Omega_{EDM}} + \underbrace{\frac{\eta}{2}\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)}_{=\Omega_{EDM}} \right]$$ ## **Spin-Precession of Charged Particles in Storage Rings** • Equation of motion for spin vector \overrightarrow{S} in the rest frame of the particle: $$\frac{d\vec{s}}{dt} = \overrightarrow{\Omega} \times \overrightarrow{s} = \overrightarrow{\mu} \times \overrightarrow{B} + \overrightarrow{d} \times \overrightarrow{E}$$ Spin-precession relative to the direction of motion: $$[(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM}) - \overrightarrow{\Omega}_{cycl}] = \frac{-q}{m} \left[\underbrace{G\overrightarrow{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\overrightarrow{v} \times \overrightarrow{E}}_{=\Omega_{MDM} - \Omega_{cycl}} + \underbrace{\frac{\eta}{2} \left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)}_{=\Omega_{EDM}} \right]$$ ### Frozen spin - $\overrightarrow{\Omega}_{MDM} \overrightarrow{\Omega}_{cycl} = 0 \Rightarrow$ frozen spin (momentum and spin stay aligned) - Achievable with pure electric field for proton (G > 0): $G = \frac{1}{2^2-1}$ ## **Search for Static EDM in Storage Rings** #### Storage ring method to measure EDM of charged particle - 1 Inject beam of polarized particles in storage ring - Align spin along momentum (→ freeze horiz. spin-precession) - Search for time development of vertical polarization ## Achievements at COSY Storage Ring ## The COSY Storage Ring at FZ-Jülich (Germany) #### **COoler SYnchrotron COSY** - Cooler and storage ring for (pol.) protons and deuterons. - Momenta p= 0.3-3.7 GeV/c - Phase-space cooled internal and extracted beams ### Previously used as spin-physics machine for hadron physics: - Ideal starting point for Storage Ring EDM related R&D - Dedicated and unique experimental effort worldwide - Closed end 2023: essential R&D expts. with MAGNETIC ring successfully done. ## **Experiment Preparation** 1 Inject and accelerate vertically pol. deut. to p \approx 1 GeV/c ## **Experiment Preparation** - 1 Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$ - 2 Flip spin with solenoid into horizontal plane ## **Experiment Preparation** - 1 Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$ - Flip spin with solenoid into horizontal plane - Extract beam slowly (100 s) on Carbon target - Measure asymmetry and determine spin precession ## Spin-dependent elastic deuteron-carbon scattering - $\bullet \ \ \, \text{Up/Down asymmetry} \propto \textit{horizontal polarization}$ - N_{up,down} $\propto 1 \pm \frac{3}{2} p_z A_y sin(\nu_s \omega_{rev} t);$ $\nu_s = \gamma G \simeq -0.161$ (spin-tune); $f_{rev} = 781$ kHz; $f_s = 126$ kHz. - ullet Left/Right asymmetry \propto vertical polarization \rightarrow d Asymmetry: $$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin(2\pi \cdot \nu_s \cdot n_{turns})$$ ### Challenge - Spin precession frequency: 126 kHz - event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates ## Solution: map many event to one cycle - Counting turn number n \rightarrow phase advance $\phi_s = 2\pi \nu_s n$ - For intervals of $\Delta n = 10^6$ turns: $\phi_s \to \phi_s \mod 2\pi$ ## **Prerequisite: Long Spin-Coherence Time** Invariant spin axis and spin-coherence time 1st Major Achievement [Phys. Rev. Lett. 117 (2016) 054801] - $\tau_{SCT} = (1173 \pm 172) s$ - Previously: $\tau_{SCT}(VEPP) \approx 0.5 \, s$ - SCT is of crucial importance, since $\sigma_{STAT} \propto \frac{1}{\tau_{SCT}}$ ## **Precise Determination of the Spin-Tune** #### Spin-tune ν_s $$u_{ m s} = \gamma { m \it G} = rac{{ m \it nb.spin-rotations}}{{ m \it nb.particle-revolutions}}$$ ## 2nd major achievement [Phys. Rev. Lett. 115 (2015) 094801] - Interpolated spin tune in 100 s: - $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11} (\Delta \nu_s / \nu_s \approx 10^{-10})$ - $lackbox{ } \rightarrow$ new tool to study systematic effects in storage rings # **Phase-Locked Spin Precession** ## Spin-feedback system maintains: - resonance frequency - phase between spin-precession and device RF 3rd major achievement [Phys. Rev. Lett. 119 (2017) 014801]: Error of phase-lock σ_{ϕ} = 0.21 rad # **Phase-Locked Spin Precession** ## Spin-feedback system maintains: - resonance frequency - phase between spin-precession and device RF 3rd major achievement [Phys. Rev. Lett. 119 (2017) 014801]: Error of phase-lock σ_{ϕ} = 0.21 rad At COSY freezing of spin precession not possible \rightarrow phase-locking required to achieve precision for EDM # Measurement of EDM in a magnetic ring First-ever direct EDM measurement using this method ## Concept • Radial field $\overrightarrow{E} = c\overrightarrow{\beta} \times \overrightarrow{B}$ from relativistic motion in vertical \overrightarrow{B} • Spin precession: $\frac{d\overrightarrow{S}}{dt} \propto \overrightarrow{d} \times \overrightarrow{E}$ # Measurement of EDM in a magnetic ring First-ever direct EDM measurement using this method ## Concept - Radial field $\overrightarrow{E} = c\overrightarrow{\beta} \times \overrightarrow{B}$ from relativistic motion in vertical \overrightarrow{B} - Spin precession: $\frac{d\overrightarrow{S}}{dt} \propto \overrightarrow{d} \times \overrightarrow{E}$ Problem: \Rightarrow only small oscillation of vertical polarization p_{γ} due to EDM. - Momentum ↑, spin ↑ ⇒ spin kicked up - Momentum ↑, spin ↓ ⇒ spin kicked down - ⇒ no accumulation of vert. asymmetry # Measurement of EDM in a magnetic ring First-ever direct EDM measurement using this method ## Concept - Radial field $\overrightarrow{E} = c\overrightarrow{\beta} \times \overrightarrow{B}$ from relativistic motion in vertical \overrightarrow{B} - Spin precession: $\frac{d\overrightarrow{S}}{dt} \propto \overrightarrow{d} \times \overrightarrow{E}$ Problem: \Rightarrow only small oscillation of vertical polarization p_{γ} due to EDM. - Momentum ↑, spin ↑ ⇒ spin kicked up - Momentum ↑, spin ↓ ⇒ spin kicked down - ⇒ no accumulation of vert. asymmetry #### Solution: RF-Wien filter - Lorentz force: $\overrightarrow{F_L} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}) = 0$ \rightarrow particle trajectory not affected - $\overrightarrow{B} = (0, B_y, 0)$ and $\overrightarrow{E} = (E_x, 0, 0)$ \rightarrow mag. moment influenced # Measurement of EDM in a magnetic ring RF-Wien filter¹ - Waveguide provides $\vec{E} \times \vec{B}$ by design. - Minimal \overrightarrow{F}_L by careful electromagnetic design of all components. ¹Joint development with RWTH Aachen ## **Pilot Bunch Comagnetometer** ## 4th major achievement [Phys. Rev. Research 7, 023257] - ullet Observation of p_y (t) with two stored bunches: pilot bunch and signal bunch - Pilot bunch shielded from Wien-fillter RF by fast RF switches - Pilot bunch Signal bunch - No oscillations in pilot bunch. - Decoherence visible in signal bunch. # **Tilting of the Invariant Spin Axis** z (beam) EDM absence EDM effect Magnetic misalignm. ## EDM + magnetic misalignments tilt the invariant spin axis - Presence of EDM $\rightarrow \phi_{EDM} > 0$ - Presence of magnetic misaligments $\rightarrow \phi_{EDM} \& \xi_{ring} > 0$ - ightharpoonup spin precess around the \vec{n}_{ISA} axis - ightharpoonup ightharpoonup oscill. vert. polarization $p_y(t)$ # **Results of dEDM Precursor Experiment** ## **EDM** resonance strength map for ϵ^{EDM} Includes tilts of invariant spin axis due to EDM and magnetic ring imperfections. ### Preliminary result on static EDM - 1st ever measurement of deuteron's EDM - Determination of minimum via fit with theoretical surface function yields: - n_x^{WF} (mrad) = -2.1(12) n_z^{WF} (mrad) = 3.9(6) $$\Rightarrow d_{EDM} < 3 \cdot 10^{-17} e \cdot cm (95 \% CL)$$ # **Results of dEDM Precursor Experiment** ## EDM resonance strength map for ϵ^{EDM} • Includes tilts of invariant spin axis due to EDM and magnetic ring imperfections. ### Preliminary result on static EDM - 1st ever measurement of deuteron's EDM - Determination of minimum via fit with theoretical surface function yields: - n_x^{WF} (mrad) = -2.1(12) - n_z^{WF} (mrad) = 3.9(6) $$\Rightarrow d_{EDM} < 3 \cdot 10^{-17} e \cdot cm (95 \% CL)$$ • Only other direct measurement: $\mu_{EDM} < 1.9 \cdot 10^{-19} e \cdot cm$ (95 % CL) \rightarrow see talk of A. Andres on 23.09 for details # Search for Axion-Like Particles in a Storage Ring First-ever search using this method #### **Axions and oscillating EDM** - Axion interaction with ordinary matter: $\frac{a}{f_0}F_{\mu\nu}\tilde{F}_{\mu\nu}$, $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu}$, $\frac{\partial_{\mu}a}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$ - $\frac{a}{b}G_{\mu\nu}\tilde{G}_{\mu\nu} o$ coupling to gluons with same structure as QCD- θ term - Generation of an oscillating EDM with freq. related to mass: $\hbar\omega_a=m_ac^2$ # Search for Axion-Like Particles in a Storage Ring #### First-ever search using this method #### **Axions and oscillating EDM** - Axion interaction with ordinary matter: $\frac{a}{f_0}F_{\mu\nu}\tilde{F}_{\mu\nu}$, $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu}$, $\frac{\partial_{\mu}a}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$ - $\frac{a}{\hbar}G_{\mu\nu}\tilde{G}_{\mu\nu} o$ coupling to gluons with same structure as QCD- θ term - Generation of an oscillating EDM with freq. related to mass: $\hbar\omega_a=m_ac^2$ #### **Experimental approach** - $\bullet \ \, \text{Mag. dipole moment (MDM)} \rightarrow \text{spin prec. in B field} \rightarrow \text{nullifies static EDM effect}$ - Osc. EDM resonant condition ($\omega_a = \omega_s$) \rightarrow buildup of out-of-plane spin rotation # **Experiment at COSY** #### Momentum ramps (f_{rev}) searching for polarization changes Organization of frequency ramps. • Jump of vertical polarization when resonance is crossed, for $\omega_a = \omega_s$ ## **Bound on the Oscillating EDM of the Deuteron** #### Observed oscillation amplitudes from 4 bunches - 90 % CL upper limit on the ALPs induced oscillating EDM - Average of individual measured points $d_{AC} < 6.4 \times 10^{-23}$ e cm ## Axion Coupling to EDM Operator $g_{ad\gamma}$ (e.g. Axion/Gluon Coupling) ## Limits on axion/ALP neutron coupling from the Particle Data Group - $g_{ad\gamma} = d_{AC} = \frac{d_AC}{a_0}$; $a_0 = 0.55 \frac{GeV}{cm^3}$ (Dark Matter saturated by ALPs) - It includes JEDI result: S. Karanth et al., Phys. Rev. X 13 (2023) 031004 # Axion Wind Effect: Coupling to Nucleons $\frac{C_N}{f_a}$ Storage ring experiments particularly sensitive to axion wind effect # Next steps ## Objective: Construction of a Dedicated SR for EDM Studies #### Possible approaches - One step approach: immediate construction of final ring - Staged approach: intermediate prototype ring ## **Design Options for Frozen-Spin Proton Rings** ## Two-options: - Hybrid 100 m ring: p = 300 MeV/c bending radius ≈ 9 m at E=7 MeV/m - Pure electric 800 m ring:; p = 707 MeV/c; bending radius ≈ 50 m at E = 8 MeV/m ## **Stage 2: Prototype EDM Storage Ring** #### 100 m circumference - p at 30 MeV all-electric CW-CCW beams operation - Frozen spin including additional vertical magnetic fields ## **Challenges** - All electric & E-B combined deflection - Storage time - CW-CCW operation → next slide - Orbit control - Control of orbit difference - Polarimetry - Spin-coherence time - Magnetic moment effects - Stochastic cooling ## **Objectives of PSR** - Study open issues. - First direct proton EDM measurement. ## **Stage 3: Precision EDM Ring** #### 500 m circumference (with E = 8 MV/m) - All-electric deflection - Magic momentum for protons (p = 707 MeV/c) ## **Challenges** - All-electric deflection - Simultaneous CW/CCW beams - Phase-space cooled beams - Long spin coherence time (> 1000 s) - Non-destructive precision polarimetry - Optimum orbit control - Optimum shielding of external fields - Control of residual B_r fields "Holy Grail" storage ring (largest electrostatic ever conceived) # Developm.: Extending the Spin-Coherence Time in Storage Rings ## **Spin-Coherence Time (SCT)** - Polarization vector: $\vec{P}(t) = \frac{1}{n} \sum_{i=1}^{n} \vec{s_i}(t)$ - Definition: $P(\tau) = P_0/e$ ## **Analytical Model** - $\tau \propto 1/\Delta \nu_s$ (spin-tune spread) - $\Delta \nu_s \propto \Delta L/L$ (path lengthening) - ⇒ Optimization via sextupole families $$\begin{split} \frac{\Delta L}{L} &= -\frac{\pi}{L} \left(\epsilon_x \xi_x + \epsilon_y \xi_y \right) + \alpha_0 \delta + \alpha_1 \delta^2 \\ &= \alpha_1 \delta^2 - \frac{\pi}{L} \epsilon_x \xi_x - \frac{\pi}{L} \epsilon_y \xi_y \end{split}$$ #### **Validation through Bmad Simulations** ⇒ see talk of R. Shankar on 23.09 for details # Statistical Reach of the EDM Ring ### High precision, primarily electric storage ring - Beam intensity: N=4 · 10¹⁰ per fill - Polarization: P=0.8 - Spin coherence time: $\tau = 1000 \text{ s}$ - Electric fields: E = 8 MV/m - Polarimeter analyzing power: A = 0.6 - Polarimeter efficiency: f = 0.005 #### **Expected statistical sensitivity in 1 year of DT:** - $\sigma_{stat} = \frac{2\hbar}{\sqrt{N}t_{\tau}PAF} \Rightarrow \sigma_{stat} = 2.4 \cdot 10^{-29} e \cdot cm$ - \Rightarrow Challenge: get σ_{syst} to the same level. # Statistical Reach of the EDM Ring ## High precision, primarily electric storage ring - Beam intensity: N=4 · 10¹⁰ per fill - Polarization: P=0.8 - Spin coherence time: $\tau = 1000 \text{ s}$ - Electric fields: E = 8 MV/m - Polarimeter analyzing power: A = 0.6 - Polarimeter efficiency: f = 0.005 #### **Expected statistical sensitivity in 1 year of DT:** - $\sigma_{stat} = \frac{2\hbar}{\sqrt{Nf_{\tau}PAF}} \Rightarrow \sigma_{stat} = 2.4 \cdot 10^{-29} e \cdot cm$ - \Rightarrow Challenge: get σ_{syst} to the same level. ## B. Marciano (Snowmass Workshop, Sept. 2020) about $d_p \sim 10^{-29}$: - $d_p \sim \frac{e \cdot m}{\Lambda_{ND2}} sin\phi^{NP}$ ($\Lambda_{NP} \equiv$ scale of NP; $\phi^{NP} \equiv$ complex CP violation phase of NP) - If ϕ^{NP} is of O(1) $\Rightarrow \Lambda_{NP} \sim 3000$ TeV probed - If $\Lambda_{NP} \sim O(1 \text{ TeV}) \Rightarrow \phi^{NP} \sim 10^{-6} \text{ probed}$ # **Systematic Limits and Mitigation** • Signal: $\Omega_{EDM} = \frac{dE}{sh} = 2.4 \cdot 10^{-9} s^{-1}$ for $d = 10^{-29} e \cdot cm$ #### Possible systematic contributions - Radial B-field: $B_r = 10^{-17} \text{ T}$: $\Omega_{B_r} = 1.7 \cdot 10^{-9} \text{s}^{-1}$ - Geometric phase: $B_{long} = B_{vert} = 10^{-9} \text{ T: } \Omega_{B_r} = \frac{eGB_r}{16m} \frac{1}{f_{rev}} = 3.7 \cdot 10^{-9} s^{-1}$ - General relativity: $\Omega_{GR} = -\frac{\gamma}{\gamma^2 + 1} \frac{\beta g}{c} = -4.4 \cdot 10^{-8} s^{-1}$ # **Systematic Limits and Mitigation** • Signal: $\Omega_{EDM} = \frac{dE}{s\hbar} = 2.4 \cdot 10^{-9} s^{-1}$ for $d = 10^{-29} e \cdot cm$ #### Possible systematic contributions - Radial B-field: $B_r = 10^{-17} \text{ T}$: $\Omega_{B_r} = 1.7 \cdot 10^{-9} \text{ s}^{-1}$ - Geometric phase: $B_{long} = B_{vert} = 10^{-9} \text{ T: } \Omega_{B_r} = \frac{eGB_r}{16m} \frac{1}{f_{rev}} = 3.7 \cdot 10^{-9} s^{-1}$ - General relativity: $\Omega_{GR} = -\frac{\gamma}{\gamma^2 + 1} \frac{\beta g}{c} = -4.4 \cdot 10^{-8} s^{-1}$ #### **Control strategy** Use of two beams running clockwise (CW) and counterclockwise (CCW): $$\Omega_{\textit{CW}} = \frac{\Omega_{\textit{EDM}} + \Omega_{\textit{GP}} + \Omega_{\textit{GR}} + \Omega_{\textit{B}_r}; \qquad \Omega_{\textit{CCW}} = \frac{\Omega_{\textit{EDM}} - \Omega_{\textit{GP}} - \Omega_{\textit{GR}} + \Omega_{\textit{B}_r}}{\Omega_{\textit{CCW}}}$$ - \Rightarrow In the sum, $\Omega_{GP} + \Omega_{GR}$ cancel out. - \Rightarrow Effect of B_r removed by observing relative displacement of the two beams. J. Pretz #### **Conclusions** #### **EDM searches in Storage Rings** - EDM searches probe new CP violation ⇒ key to matter-antimatter asymmetry - Key developments in accelerator technology #### **Fundamental achievements at COSY** - Spin-control tools - First measurement of (static and oscillating) deuteron EDM #### **Next step** - Design and construction of a pure electrostatic EDM proton ring - Possible approaches - Direct approach - Staged approach #### **Conclusions** #### **EDM searches in Storage Rings** - EDM searches probe new CP violation ⇒ key to matter-antimatter asymmetry - Key developments in accelerator technology #### **Fundamental achievements at COSY** - Spin-control tools - First measurement of (static and oscillating) deuteron EDM #### **Next step** - Design and construction of a pure electrostatic EDM proton ring - Possible approaches - Direct approach - Staged approach Outstanding discovery potential! # Thank you! ## **JEDI Collaboration: selected publications** - D. Eversmann et al (JEDI Collaboration): New method for a continuous determination of the spin tune in storage rings and implications for precision experiments - Phys. Rev. Lett. 115, 094801 (2015) - J. Slim, et al.:Electromagnetic simulation and design of a novel waveguide rf-Wien filter for electric dipole moment measurements of protons and deuterons Nucl. Instr. and Meth. A: 828, 116 (2016), ISSN 0168-9002 - G. Guidoboni et al. (JEDI Collaboration): How to reach a thousand-second in-plane polarization lifetime with 0:97 Gev/c deuterons in a storage ring - Phys. Rev. Lett. 117, 054801 (2016) - N. Hempelmann et al. (JEDI Collaboration): Phase locking the spin precession in a storage ring - Phys. Rev. Lett. 119, 014801 (2017) - F. Abusaif (CPEDM Collaboration): Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study - (CERN, Geneva, 2021) - S. Karanth et al. (JEDI Collaboration): First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam - S. Karanth et al., Phys. Rev. X 13 (2023) 031004. - J. Slim, et al. (JEDI Collaboration): Proof-of-principle demonstration of a pilot bunch comagnetometer in a stored beam - J. Slim et al., Phys. Rev. Research 7, 023257 # Spare slides # Implementation of fast switches² at RF Wien filter Modification of driving circuit #### **GaN HEM FET-based solution:** - Short switch on/off times (\approx few ns). - High power capabilities (\approx few kV). - On board power damping (- 30 dB) - \bullet Symmetric switch on/off times (\approx ns). #### **Switches** - Capable to handle up to 200 W each - Permits system to run near a total power of 0.8 kW in pulsed mode ¹Developed together with Fa. barthel HF-Technik GmbH, Aachen ## Measurement of EDM in a magnetic ring Beam position monitors for srEDM experiments • Main adv.: short install. length (\approx 1 cm in beam direction) #### **Conventional BPM** - Easy to manifacture - Length = 20 cm - Resolution \approx 10 μ m #### Rogowski BPM (warm) - Excellent RF-signal response - Length = 1 cm - Resolution \approx 1.25 μ m 2 coils installed at entrance and exit of RF Wien filter ## **Strength of EDM resonance** #### EDM induced polarization oscillation - Described by: $p_y(t) = a \sin(\Omega^{p_y} t + \phi_{RF})$ - EDM resonance strength: ratio of $Ω^{py}$ to orbital ang. frequency $Ω^{rev}$: $ε^{EDM} = \frac{Ω^{py}}{Ω^{rev}}$ ### Methodology of EDM measurement Two features simultaneously applied in the ring: - RF Wien-filter rotated by a small angle \rightarrow generates small radial magnetic RF-field \rightarrow affects the spin evolution. - 2 In addition: longitudinal magnetic field in ring opposite to Wien-flter, about which spins rotate as well #### **Concept of EDM measurement** - Determination of the invariant spin axis - Deduce upper limit for deuteron EDM Lenisa (Ferrara) EDM SEARCH SPIN2025 52/54 ## E/B deflector development using real-scale lab setup ## **Equipment:** - Dipole magnet B_{max} = 1.6 T - Mass = 64 t - Gap height = 200 mm - Protection foil between chamber wall and detector #### Parameters: - Electrode length = 1020 mm - Electrode height = 90 mm - Electrode spacing = 20 to 80 mm - Max. applied voltage = ± 200 kV - Material: Aluminum coated by TiN #### Results Electrodes at the distance of 30 mm inside the vacuum chamber - Electric field between the electrodes vs displacement. - Measurement procedure shortened due to time constraints. - Max. electric field strength: 7 MV/m with 60 mm spacing between electrodes - Next step: setup moved to BNL?