Spin physics at small x^{-1}

Bo-Wen Xiao

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen

¹Special thanks to J. Zhou and T. Liu for inputs.

Three pillars of EIC Physics

To understand our physical world, we have to understand QCD!

- How does the spin of proton arise? (Spin puzzle)
- What are the emergent properties of dense gluon system?
- How does proton mass arise? Mass gap: million dollar question.

EICs: keys to unlocking these mysteries! Many opportunities will be in front of us!

Understanding Nucleon Spin

0.175

0.20

Quark Contribution to Proton Spin

0.225

Jaffe-Manohar decomposition

$$\frac{1}{2} = \underbrace{\frac{1}{2}\Delta\Sigma + L_q}_{\text{Quark}} + \underbrace{\Delta G + L_g}_{\text{Gluon}}$$

- Quark spin $\Delta\Sigma$ is only 30% of proton spin. $g_1(x, Q^2) = \frac{1}{2} \sum e_q^2 \left[\Delta q + \Delta \bar{q} \right]$ [EMC, 1988]
- Spin Puzzle: contradicts with the quark model.
- The rest of the proton spin must come from the gluon spin ΔG , quark and gluon OAM $L_{q,g}$.
- EIC will help determine ΔG precisely.

Exclusive DIS (DVCS and DVVP)

Ji Sum Rule:

$$\begin{split} &\frac{1}{2} = J_q + J_g \\ &J_q = \frac{1}{2}\Delta\Sigma + L_q = \frac{1}{2}\int dxx \left(H_q + E_q\right) \;, \\ &J_g = \frac{1}{4}\int dx \left(H_g + E_g\right) . \end{split}$$

- Allows us to access to spacial distributions (related to GPDs via FT) of quarks and gluon in the nucleon.
- Obtain the information about the orbital motions indirectly.

Saturation Physics (Color Glass Condensate) at High Energy

- Gluon density grows rapidly as x gets small.
- Many gluons with fixed size packed in a confined hadron, gluons overlap and recombine ⇒ Non-linear QCD dynamics (BK/JIMWLK) ⇒ ultra-dense gluonic matter
- Multiple Scattering (MV model) + Small-x (high energy) evolution
- Small-*x* UGD ~ Gluon TMD: [Bomhof, Mulders, Pijlman, 06] Link and [Dominguez, Marquet, Xiao, Yuan, 11] Link; Small-*x* evolution + Sudakov [Mueller, Xiao, Yuan, 13]

Quark and Gluon Helicity at Small x

Why Small-x Helicity Matters

- Small-x: $\Delta q(x)$, $\Delta G(x)$ are expected to increase, yet they are not well determined.
- Do gluons carry significant spin at small x? Need theory for small-x helicity
- BER papers and Infrared Evolution Equations (IREE) [Bartels, Ermolaev, Ryskin, 1996; etc] Helicity evolution resummation parameter is double-logarithmic $\alpha \ln^2 \frac{1}{x}$ instead of $\alpha \ln \frac{1}{x}$. (The 2nd $\ln x$ arises due to transverse momentum integral).

Light-Cone Operator Treatment (LCOT) by Kovchegov et al

Recent Progress: New small x evolution equation for helicity

- Identify sub-Eikonal line operator def. for the quark and gluon helicity distribution.
- **Formulation of helicity evolution equations** including $q \rightarrow g$ and $g \rightarrow q$ transitions
- **Exact analytic solution** in large- N_c and N_f limit, Resum Double-log: $\alpha_s \ln^2(1/x)$
- [Kovchegov, Pitonyak, Sievert, Cougoulic, Santiago, Tawabutr, Tarasov, Adamiak, Melnitchouk, Sato, Borden, Li, Manley, Baldonado, Becker, 15-25]
- Power-law growth: $\Delta\Sigma \sim \Delta G \sim g_1(x) \sim x^{-\lambda}$ with $\lambda = 3.661 \sqrt{\frac{\alpha_s N_c}{2\pi}}$.
- Compared with BER results: $\lambda = 3.664\sqrt{\frac{\alpha_s N_c}{2\pi}}$, which differs in the 3rd decimal point. At 4-loop: $\Delta \gamma_{GG}^{BER/Kov}(\omega) = \frac{4\bar{\alpha}_s}{\omega} + \frac{8\bar{\alpha}_s^2}{\omega^3} + \frac{56\bar{\alpha}_s^3}{\omega^5} + \frac{504(496)\bar{\alpha}_s^4}{\omega^3} + \cdots$

JAMsmallx Results: Experimental Evidence for Small-x Spin

How much spin is there at small x?

- [JAMsmallx Collaboration, Adamiak, et al, 23]
- 226 polarized DIS and SIDIS data points from COMPASS, HERMES, etc with $\chi^2/N_{pts} = 1.03$
- Running-coupling large- $N_c \& N_f$ evolution
- Total helicity contribution becomes negative at small-x. Large uncertainties, need better constraints

$$\int_{10^{-5}}^{0.1} dx \left(\frac{1}{2}\Delta\Sigma + \Delta G\right)(x) = -0.64 \pm 0.60$$

Gluon and Quark OAMs at the EIC

Wigner Distribution [Hatta, Xiao, Yuan, 16] Directly probing the gluon OAM at the EIC. [Ji, Yuan, Zhao, 16; Hatta, Nakagawa, Xiao, Yuan, Zhao, 16]

Measurement of single longitudinal target-spin asymmetry (two minijets diffractive production)

$$A_{\sin(\phi_q-\phi_\Delta)} \propto L_g$$

- Double spin asymmetry: [Bhattacharya, Boussarie, Hatta, 22]
- First measurement of the gluon OAM in the proton Jaffe-Manohar spin sum rule!
- Quark OAM studies: [Bhatttacharya, Metz, Zhou, 17; Engelhardt, 17] [Bhattacharya, Zheng, Zhou, 24] $ep \rightarrow ep\pi^0$ exclusive.

Small-x Evolution of Gluon GPD E_g

Evolution Equation for spin flip GPD $E_g(x)$ from **dipole S-matrix** approach

$$\partial_Y \mathcal{E}(k_\perp) = rac{ar{lpha}_s}{\pi} \int rac{d^2 k_\perp'}{(k_\perp - k_\perp')^2} \left[\mathcal{E}(k_\perp') - rac{k_\perp^2}{2 k_\perp'^2} \mathcal{E}(k_\perp)
ight] - 4 \pi^2 lpha_s^2 \mathcal{F}_{1,1}(k_\perp) \mathcal{E}(k_\perp).$$

Results and Impact

- Ji sum rule: $J_g = \frac{1}{2} \int_0^1 dx \, x [H_g + E_g]$ with $x E_g = \int d^2 k_\perp \mathcal{E}(k_\perp)$.
- [Hatta & Zhou, 22] E_g has identical small-x behavior to BFKL pomeron: $xE_g(x) \sim xH_g(x) \sim xG(x) \propto \left(\frac{1}{x}\right)^{\bar{\alpha}_s 4 \ln 2}$.
- **Saturation**: E_g/H_g ratio is expected to saturate to a constant at very small-x.
- Impact: Possible significant small-x contribution to nucleon spin sum rule from E_g .

Sivers function and Single Spin Asymmetry in $p^{\uparrow}p \rightarrow \pi + X$

[Sivers, 90] correlation between proton \vec{S}_T and parton \vec{k}_{\perp}

$$\hat{f}_{a/p\uparrow}(x,k_{\perp}) = f_{a/p}(x,k_{\perp}) - \frac{k_{\perp}}{M_p} f_{1T}^{\perp a}(x,k_{\perp}) \vec{S}_T \cdot (\hat{\vec{P}} \times \hat{k}_{\perp}).$$

- Need novel mechanism beyond collinear framework: Sivers function describes the transverse momentum distribution correlated with the transverse polarization vector of the nucleon.
- $A_N = \frac{\sigma_{\uparrow} \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \text{ implies}$ u and d anisotropy.

Sivers effect in pp/pA collisions and Forward Single Spin Asymmetry A_N

Single spin asymmetry

- [STAR Collaboration, 20] A_N for forward π^0 in pp, pAl, and pAu at $\sqrt{s_{NN}} = 200$ GeV.
- [Boer, Dumitru, Hayashigaki, 06]
 - Single transverse-spin asymmetries in forward pion production
 - Application to RHIC processes
- [Hatta, Xiao, Yoshida, Yuan, 16] SSA in forward *pA* collisions at small-*x*
- [Kovchegov, Santiago, 20] Lensing mechanism + Small-*x* mechanism (Multiple scattering and Evolution)

Small-x Effects

- [Kovchegov, Sievert, 12] Odderon and New mechanism for SSA
- [Zhou, 14; Boer, Echevarria, Mulders, Zhou, 2017; Yao, Hagiwara, Hatta, 18] Gluon Siyers and the Odderon
- [Dong, Zheng, Zhou, 18; Kovchegov, Santiago, 21] Quark Sivers, odderon and evolution

The Einstein-Podolsky-Rosen Paradox

- **The EPR Paper** [Phys. Rev. 47, 777 (1935)]
 - Can Quantum-Mechanical Description of Physical Reality be Considered Complete?
 - Challenge to Copenhagen orthodox interpretation
- Quantum Entanglement
 - The quintessential phenomenon of QM introduced by Schrödinger in response to the EPR paper.
 - Non-local correlations between particles
 - Violates local realism assumptions
- Einstein's famous phrase: "God does not play dice"
 - To which Bohr replied: "Einstein, stop telling God what to do"
- The EPR paradox revealed the profound nature of quantum entanglement!

Einstein, Podolsky, and Rosen
"Spooky action at a distance"

Schrödinger, Bohr and Einstein in 1925

Bell's Theorem

Quantum Indeterminacy

- Realism: Quantum indeterminacy reflects our ignorance of hidden variables; outcomes are determined but unknown.
- Copenhagen: Indeterminacy is fundamental; outcomes are truly probabilistic until measured.
- **Agnosticism:** The reality behind quantum events is unknowable; only predictive power of the theory matters.

■ Bell Nonlocality [Bell, 1964]

- Bell inequality: It makes an observable difference for Realism vs Copenhagen, and eliminates Agnostic view.
- Decisive evidence supporting QM (Copenhagen).
- **CHSH Inequality** [Clauser et al., 1969]
 - Generalized Bell inequality
 - Foundation for quantum information theory

John Stewart Bell

EPRB Experiment: Testing Bell Nonlocality

Einstein-Podolsky-Rosen-Bohm Experiment

Spin-singlet:
$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Correlation:
$$E(\vec{a}, \vec{b}) = \langle A(\vec{a}) \cdot B(\vec{b}) \rangle$$

Bell CHSH Inequality:

$$\mathbb{B}_{HT} = |E(a,b) - E(a,b') + E(a',b) + E(a',b')| \le 2$$

$$\mathbb{B}_{OM} = |\cos \theta_{ab} - \cos \theta_{ab'} + \cos \theta_{a'b} + \cos \theta_{a'b'}| \le 2\sqrt{2}$$

Local Hidden Variable Theory

- Pre-existing density $P(\lambda)$ for λ
- $\blacksquare E(\vec{a},\vec{b}) = \int P(\lambda) A(\vec{a},\lambda) B(\vec{b},\lambda) d\lambda$
- Local realism: $\mathbb{B}_{HT} \leq 2$

Quantum Mechanics

- No predetermined values
- $E(\vec{a}, \vec{b}) = -\vec{a} \cdot \vec{b} = -\cos \theta_{ab}$
- Nonlocality: $2 < \mathbb{B}_{QM} \le 2\sqrt{2}$ Proof: $\alpha \cos \theta + \beta \sin \theta < \sqrt{\alpha^2 + \beta^2}$

QM violates Bell inequality \Rightarrow Nature is nonlocal!

Concurrence: Measuring the Degree of Entanglement

Time Reversal Operation flips spins:

- $|\psi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$
- [Wootters, 98] flip spins with $\hat{T} = -i\sigma^y \hat{K}$ (Anti-Unitary)
- $|\tilde{\psi}\rangle = \delta^*|00\rangle \gamma^*|01\rangle \beta^*|10\rangle + \alpha^*|11\rangle$, the spin-flipped complex conjugate.
- $C(|\psi\rangle) = 2|\alpha\delta \beta\gamma|$ measures overlap with time-reversed state.
- $\mathbb{C} = 0$: Separable (no entanglement)
- \bullet 0 < \mathcal{C} < 1: Partially entangled
- $\mathbb{C} = 1$: Maximally entangled

C = invariance under time reversal

Concurrence in general:

[Hill, Wootters, 97; Wootters, 98]

- Define: $\tilde{\rho} = (\sigma_y \otimes \sigma_y) \rho^* (\sigma_y \otimes \sigma_y)$
- Compute: $\mathcal{R} = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$
- Eigenvalues of \mathcal{R} : $\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ (descending order)

$$C(\rho) = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}$$

Example - Werner State:

$$\rho_W = p|\Psi^-\rangle\langle\Psi^-| + \frac{1-p}{4}\mathbb{1}_4$$

- p = 1: Pure Bell state
- $\mathcal{C}(\rho_W) = \max\{0, \frac{3p-1}{2}\}$
- Entangled when p > 1/3

Spin Density Matrix: Physical Interpretation

The most general two-qubit density matrix:

$$\rho = \frac{1}{4} \left(\mathbb{1}_4 + B_i^+ \sigma^i \otimes \mathbb{1}_2 + B_j^- \mathbb{1}_2 \otimes \sigma^j + C_{ij} \sigma^i \otimes \sigma^j \right)$$

Physical Quantities:

$$\blacksquare B_i^+ = \operatorname{Tr} \rho(\sigma_i \otimes \mathbb{1}_2)$$

$$\blacksquare B_j^- = \operatorname{Tr} \rho(\mathbb{1}_2 \otimes \sigma_j)$$

$$C_{ij} = \operatorname{Tr} \rho(\sigma_i \otimes \sigma_j)$$

Spin correlation /NB: Not [C]

Special Case:

For Bell states:
$$B_i^+ = B_j^- = 0$$
 (No individual spin polarization)

DIICO OCC IO MOLE

Bell States & Correlation Matrices:	
Correlation Matrix	
$C_{ij} = \operatorname{diag}(-1, -1, -1)$	
$C_{ij} = \operatorname{diag}(1, 1, -1)$	
$C_{ij} = \operatorname{diag}(1, -1, 1)$	
$C_{ij} = \operatorname{diag}(-1, 1, 1)$	

For singlet state:

 $C_{ii} = -\delta_{ii}$ means spins are always anti-parallel.

Entanglement and Bell Nonlocality Conditions

$$\rho_{\alpha\alpha',\beta\beta'} = \frac{1}{4} \left(\mathbb{1}_{\alpha\alpha',\beta\beta'} + C_{ii}\sigma^i_{\alpha\beta} \otimes \sigma^i_{\alpha'\beta'} \right)$$
 with Anti-correlation: $C_{xx}, C_{yy}, C_{zz} < 0$

- Def: $D = (C_{xx} + C_{yy} + C_{zz})/3 = \text{tr}C/3$
- D = -1: Perfect anti-correlation

Four eigen values of $\mathcal{R}=\rho$ (since $\tilde{\rho}=\rho$)

$$\lambda_1 = \frac{1}{4}(1 - C_{xx} - C_{yy} - C_{zz}),$$

$$\lambda_2 = \frac{1}{4}(1 + C_{xx} + C_{yy} - C_{zz}),$$

$$\lambda_3 = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz}),$$

$$\lambda_4 = \frac{1}{4}(1 - C_{xx} + C_{yy} + C_{zz}).$$

Entanglement Condition

• Concurrence $C[\rho] = \frac{1}{2}(-3D - 1) > 0$:

$$D<-rac{1}{3}$$

Bell Nonlocality Condition

■ For CHSH violation $\mathbb{B} > 2$: [Horodecki, et al, 95]

$$D < -\frac{1}{\sqrt{2}} \approx -0.707$$

Hierarchy: Bell Nonlocality ⊂ Entanglement ⊂ All Quantum States

First Observation of Quark Entanglement at the LHC

[ATLAS (Nature 2024):] First observation of entanglement in quarks at the highest-energy. **Entanglement Marker:**

$$D = \operatorname{tr}[C]/3 = -3\langle \cos \phi \rangle$$

where ϕ is the angle between charged leptons in their parent top/antitop rest frames

Key Features:

- Spin transferred to decay products
- Measured near $t\bar{t}$ threshold
- From atomic physics to high-energy collisions: A new frontier!
- CMS, STAR, BES-III more to come.

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1} \text{ data } (2015-2018)$

Measured: D < -1/3 (Entanglement criterion) $D = -0.547 \pm 0.002$ (stat.) ± 0.021 (syst.)

• Observed: $> 5\sigma$ from no entanglemen

■ Yet, Bell Nonlocality:
$$D < -1/\sqrt{2}$$

Quark Pair Production in Photon-Gluon Fusion: Longitudinal case

[Qi, Guo, Xiao] ightharpoonup arXiv:2506.12889v1 [hep-ph] **Photon-Gluon Fusion Process** $\gamma_{\lambda=\pm,0}^*+g o q+\bar{q}$

Longitudinal photons contribution:

$$C_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\chi_1 & -\chi_2 \\ 0 & -\chi_2 & \chi_1 \end{pmatrix}$$

$$1 - 2z^2 + z^2\beta^2$$

with

$$\chi_1 = \frac{1 - 2z^2 + z^2 \beta^2}{1 - z^2 \beta^2}, \quad \chi_2 = \sqrt{1 - \chi_1^2}.$$

• ρ_L is given by a pure state $= |\Psi\rangle \langle \Psi|$, with

$$|\Psi\rangle = \frac{1}{2}(\sqrt{1+\chi_1},i\sqrt{1-\chi_1},i\sqrt{1-\chi_1},\sqrt{1+\chi_1}).$$

- Near Threshold : $|\Phi^+\rangle$; High Energy: $|\Phi^+\rangle$.
- $q\bar{q}$ has spin 1 with nonzero OAM and $\mathcal{C}[\rho_L] \equiv 1!$

Always Maximally Entangled! Very Special!

Quark Pair Production in Photon-Gluon Fusion: Transverse case

[Qi, Guo, Xiao] ightharpoonup arXiv:2506.12889v1 [hep-ph] Transverse photons: similar to $gg \rightarrow q\bar{q}$ channel.

- Density plots of the concurrence for transverse photon as functions of β and $z = \cos \theta$ at given $\alpha \equiv Q^2/\hat{s}$.
- Solid lines (entanglement ($C[\rho_T] = 0$)) and dashed lines (Bell nonlocality).
- Near Threshold ($\beta \to 0$): Maximally entangled singlet Ψ^-
- High Energy ($\beta \to 1$) with $\theta = \pi/2$: Maximally entangled triplet Φ^- .
- Low background and Maximal signal. Better to have *LT* separation! (Also UPC)
- Diffractive production also see [Fucilla and Hatta, 2509.05267].
- Possible measurements: $b\bar{b}$ or $c\bar{c}$ or hyperon $\Lambda\bar{\Lambda}$.

Summary and Outlook

- Spin physics at small *x* has become the high energy frontier of nucleon structure study.
- Small-*x* limit allows us to better understand spin puzzle and other spin effects.
- EIC offers the ideal facility for measuring Entanglement and Bell Nonlocality.
- New opportunities to explore the interplay of quantum information phenomena and high energy and hadronic physics in the years to come.

Top Quark Weak Decay and Spin Transfer (Backup 1)

Top Quark Decay: Choose its rest frame

$$t \to W^+ b \to \ell^+ \nu_\ell b, \, \bar{t} \to W^- \bar{b} \to \ell^- \bar{\nu}_\ell \bar{b}$$

Decay Spin Density Matrix:

$$\Gamma_{\pm} = \frac{\mathbb{1}_2 + \kappa_{\pm} \vec{\sigma}_t \cdot \hat{l}_{\pm}}{2}$$

Parity Violating Angular Distribution:

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \kappa_{\pm}\cos\theta$$

- **Spin-momentum correlation**
- $\kappa_{\pm} = \pm 1$ ($t\bar{t}$) spin analyzing power
- $\sigma_{l+l_{-}} \propto \operatorname{tr}[\Gamma_{+} \otimes \Gamma_{-} \rho] \operatorname{NB} \operatorname{tr}[\sigma^{i} \sigma^{j}] = 2\delta^{ij}$

Entanglement: Lepton Correlation

$$\frac{d^2\sigma}{\sigma d\Omega_+ d\Omega_-} = \frac{1}{(4\pi)^2} \left[1 - \hat{l}_+ \cdot C \cdot \hat{l}_- \right]$$

$$\cos \varphi \rangle = -\frac{1}{3}D = -\frac{1}{9}\text{Tr}(C)$$

- Extract D = Tr(C)/3 parameter directly
- **Quantum Tomography**: all elements of ρ can be measured. [Bernreuther, Heisler, Si, 15; ATLAS, 1612.07004; CMS, 1907.03729]

Theory vs Experiment: Top Quark Entanglement (Backup 2)

Quantum State Tomography $\rho_{\alpha\alpha',\beta\beta'} = R_{\alpha\alpha',\beta\beta'}/\text{tr}R$ [Afik, de Nova, 2022] **Near Threshold** ($\beta \rightarrow 0$):

Top quark pair production

$$R_{lphalpha',etaeta'} = rac{1}{N}\sum \mathcal{M}^*_{t_lphaar{t}_{lpha'}} \mathcal{M}_{t_etaar{t}_{eta'}}$$

- Measured $D \approx -0.54$ near threshold
- Gluon fusion dominance at LHC.
- Angular momentum conservation
- **Statistical mixture** of $q\bar{q}$ and gg

- $\mathbf{q}\bar{q}$: Separable state ($\mathcal{C}=0$), since $t\bar{t}$ spin (± 1) is equally mixed along beam.
- \blacksquare gg: Maximally entangled singlet Ψ^-

High Energy ($\beta \to 1$) with $\theta = \pi/2$:

■ Both channels: Maximally entangled triplet Ψ^+ along \hat{n} with nonzero OAM.

Mixed State at LHC

$$\rho = w_{q\bar{q}}\rho_{q\bar{q}} + w_{gg}\rho_{gg}$$

