

Recent Results of Baryon Electromagnetic Form Factors at BESIII

Mi Wang

University of Science and Technology of China (On behalf of BESIII Collaboration)

Sep. 22-26, 2025 Shandong University, Qingdao, China

- 1. Introduction of EMFFs
- 2. BESIII Experiment
- 3. Nucleon Form Factors at BESIII
- 4. Hyperon Form Factors at BESIII
- 5. Summary

Electromagnetic Form Factors (EMFFs)

- ► Electromagnetic Form Factors are fundamental properties of the Baryons
 - Connected to charge, current distribution
 - Crucial testing ground for models of the baryons' internal structure and dynamics

▶ The baryon electromagnetic vertex Γ_{μ} describes the hadron current:

$$\Gamma_{\mu}(p',p)=\gamma_{\mu}F_1(q^2)+rac{i\sigma_{\mu
u}q^
u}{2m_p}F_2(q^2), \quad F_1(q^2): ext{Dirac FF}, F_2(q^2): ext{Pauli FF}$$

► Sachs FFs: $G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2)$, $G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2)$

Time-like EMFFs: Theoretic Review

1961, first paper by N. Cabibbo and R. Gatto: (Phys.Rev. 124 (1961) 1577-1595)

▶ The production Born cross section of $e^+e^- o B\bar{B}$ (1/2 baryon) is given by:

$$\sigma_{B\bar{B}} = \frac{4\pi\alpha^2 C\beta}{3q^2} \left[|G_M(q^2)|^2 + \frac{1}{2\tau} |G_E(q^2)|^2 \right] , \, \tau = \frac{q^2}{4m_B^2}$$

Assuming
$$|G_E(q^2)| = |G_M(q^2)|$$
, $\sigma_{B\bar{B}} = \frac{2\pi\alpha^2C\beta}{q^2}|G_{eff}(q^2)|^2$

► The complex feature of TLFF leads to a polarization of the outgoing baryons even the beams are unpolarized.

(Nuov Cim A 109, 241–256 (1996))

$$P_{y} = -\frac{\sin 2\theta \ \Im(G_{E}(q^{2})G_{M}(q^{2})^{*})/\sqrt{\tau}}{\left|G_{E}(q^{2})\right|^{2}\sin^{2}\theta/\tau + \left|G_{M}(q^{2})\right|^{2}(1+\cos^{2}\theta)}$$

Nat. Phys. 15, 631 (2019)

Time-like EMFFs: Experiment Review

Energy scan method at discrete c.m.energies

- Well-defined c.m.energy, low background
- Very good energy resolution
- Discrete values, leaving gaps without information

Initial state radiation method at a fixed c.m.energy

- At a fixed c.m.energy \sqrt{s} , collecting events from threshold to \sqrt{s}
- Systematic uncertainty in a coherent way
- Large luminosity needed
- Higher background

- 1. Introduction of EMFFs
- 2. BESIII Experiment
- 3. Nucleon Form Factors at BESIII
- 4. Hyperon Form Factors at BESII
- 5. Summary

BESIII Expriment

BESIII detector records symmetric e^+e^- collisions in the τ -charm region(1.84-4.95 GeV).

Ideal environment to study the Baryon EMFFs with both energy scan and ISR methods!

Nucl. Instrum. Meth. A 614, 345-399 (2010)

- 1. Introduction of EMFFs
- 2. BESIII Experiment
- 3. Nucleon Form Factors at BESIII
- 4. Hyperon Form Factors at BESIII
- 5. Summary

Effective EMFFs of Proton and Neutron

- $ightharpoonup |G_{eff}|$ of proton is measured with high accuracy using both energy scan and ISR method.
- $ightharpoonup |G_{eff}|$ of neutron is measured with energy scan method from 2.00-3.08 GeV.
- **Oscillation** of reduced- $|G_{eff}|$ (subtracting the modified dipole contribution) is observed in neutron with a phase orthogonal to that of proton.

Recent Results of Proton EMFFs

- ▶ $|G_E/G_M|$ is determined with high accuracy, $\delta |G_E/G_M| \sim 3.5\%$ (most precise)
- $ightharpoonup |G_E|$ and $|G_M|$ are measured for the first time over a wide range of energies.

PRL 124, 042001 (2020)

Recent Results of Neutron EMFFs

- ▶ $|G_E|$, $|G_M|$ of neutron are measured separately from $\sqrt{s} = 2.0 2.95 \text{ GeV}^1$.
- ▶ Compared with the FENICE results², the values for $|G_M|$ from this work are smaller by a factor of 2-3.
- ▶ Results is compared with various models: pQCD, modified dipole, VMD and dispersion relations (DR), and DR model gives good consistency.

¹PRL 130, 151905 (2023)

²Nucl. Phys. B517, 3 (1998)

- 1. Introduction of EMFFs
- 2. BESIII Experiment
- 3. Nucleon Form Factors at BESIII
- 4. Hyperon Form Factors at BESIII
- 5. Summary

Measurement of Hyperons FFs

- ▶ It is difficult to study EMFFs of hyperons in space-like due to the difficulty in stable and high-quality hyperon beams.
- \triangleright The hyperons can be produced in e^+e^- annihilation above their production threshold.
- ► The angular distribution of daughter baryon from Hyperon weak decay is:

 - * $\frac{d\sigma}{d\Omega} \propto 1 + \alpha_{\Lambda} P_y \cdot \hat{q}$ * α_{Λ} : asymmetry parameter (P-violation)

Advantages:

- * Cross section is obtained very close to threshold with finite PHSP of final state.
- * With hyperon weak decay to B+P, the polarization of hyperon can be measured, so does the relative phase between G_F and G_M ! (Of course, enough statistics needed)

Complete Measurement of Σ^+ EMFFs

- ► The reaction $e^+e^- \to \Sigma^+(\to p\pi^0)\bar{\Sigma}^-(\to \bar{p}\pi^0)$ is formalized by joint angular distribution.
- ▶ The non-zero relative phase ($\Delta\Phi$) between G_E and G_M will lead to a P_y polarization of the outgoing baryons.

$$\mathcal{W}(\xi) \propto \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi) \quad \text{Unpolarized part}$$

$$+ \alpha_1 \alpha_2 (\mathcal{F}_1(\xi) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi)) \quad \text{Spin correlated part}$$

$$+ \sqrt{1 - \alpha^2} \sin(\Delta \Phi) (-\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi)) \quad \text{polarization part}$$

$$\mathcal{F}_{0}(\xi) = 1$$

$$\mathcal{F}_{1}(\xi) = \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} - \cos^{2}\theta \cos\theta_{1} \cos\theta_{2}$$

$$\mathcal{F}_{2}(\xi) = \sin\theta \cos\theta(\sin\theta_{1} \cos\theta_{2} \cos\phi_{1} - \cos\theta_{1} \sin\theta_{2} \cos\phi_{2})$$

$$\mathcal{F}_{3}(\xi) = \sin\theta \cos\theta \sin\theta_{1} \sin\phi_{1}$$

$$\mathcal{F}_{4}(\xi) = \sin\theta \cos\theta \sin\theta_{2} \sin\phi_{2}$$

$$\mathcal{F}_{5}(\xi) = \cos^{2}\theta$$

$$\mathcal{F}_{6}(\xi) = \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \sin\phi_{1} \sin\phi_{2} - \cos\theta_{1} \cos\theta_{2}.$$

Complete Measurement of Σ^+ EMFFs

- ▶ Polarization is observed at $\sqrt{s} = 2.396$, 2.644 and 2.90 GeV with a significance of 2.2σ , 3.6σ and 4.1σ .³
- ▶ Relative phase $\Delta\Phi$ is determined for the first time in a wide q^2 range.

³(PRL 132, 081904 (2024))

Complete Measurement of Λ EMFFs

- ► Clear P_y polarization can be observed in the first complete measurement of Λ EMFFs at 2.396 GeV.⁴
- A newest measurement of Λ EMFFs at 5 energy points from 2.3864 GeV to 3.0800 GeV is submitted to the arxiv.⁵ A fit based on dispersion relations is performed to determine the complex form factor ratio as a function of q^2 .

⁴PRL 123, 122003 (2019)

⁵https://arxiv.org/pdf/2506.08072

- 1. Introduction of EMFFs
- 2. BESIII Experiment
- 3. Nucleon Form Factors at BESIII
- 4. Hyperon Form Factors at BESIII
- 5. Summary

Summary

- ▶ Fruitful results of EMFFs from e^+e^- colliders via energy scan and ISR methods.
- **Conventional parameterization of EMFFs is facing challenge from experimental observations (threshold effect, oscillation in reduced FFs and** $|G_E/G_M|$ ratio).
- ► Relative phase of EMFFs gives rise to polarization of final baryons, and will play an important role in distinguishing various theoretical models.
- ▶ More results from BESIII are on the way.

Thank You!