Relativistic spin hydrodynamics and spin polarization

Xu-Guang Huang

Fudan University, Shanghai

The 26th international symposium on spin physics (SPIN2025) September 24, 2025 @ Qingdao

Spin polarization in heavy-ion collisions

▶ Heavy-ion collision (HIC) and quark-gluon plasma (QGP)

▶ Spin polarization as a probe to QGP

Spin polarization in heavy-ion collisions

STAR preliminary

 ϕ - Ψ_{a} [rad]

• Local spin polarization of Λ hyperons:

-0.012

-0.016

2) Transverse polarization vs ϕ

▶ Spin alignment of vector mesons $\phi, K^{*0}, J/\psi, D^{*+}$:

-2

-2 -1 0

 p_x [GeV]

⇒ A dynamic framework for spin: Relativistic spin hydrodynamics

Spin hydrodynamics applications

▶ Such a hydrodynamic theory for spin may have a wide applications:

- In this talk, we discuss:
 - ▶ What does spin hydrodynamics really mean?
 - ▶ How to construct spin hydrodynamics?
 - ▶ How to apply spin hydrodynamics to, e.g., heavy-ion collisions?

What does spin hydrodynamics mean?

Hydrodynamics

- Long-time large-distance effective theory of conserved densities (hydrodynamic modes).
 - Non-hydro modes relax at a finite time scale $\tau=1/\Gamma$. Hydro modes relax at $\tau_{\rm hydro}=1/\omega_{\rm hydro}(k)\to\infty$ when $k\to0$.
 - ▶ Hydrodynamics is constructed using spatial derivative expansion.
 - ▶ Typical hydro modes: energy density, momentum density, baryon charge density, · · · .

For example, hydro equations for energy and momentum densities:

Energy-momentum conservation:
$$\partial_{\mu}\Theta^{\mu\nu}(x)=0$$

with energy-momentum tensor $\Theta^{\mu\nu}$ expanded order by order in derivative giving the constitutive relations,

$$\Theta^{\mu\nu} = \underbrace{\epsilon u^{\mu}u^{\nu} + p\Delta^{\mu\nu} - \zeta\theta\Delta^{\mu\nu} - 2\eta\partial_{\perp}^{\langle\mu}u^{\nu\rangle}}_{\text{Ideal hydro}} + O(\partial^2)$$

Can spin be a true hydro mode?

▶ But, spin is not conserved, only total angular momentum (AM) is:

$$\begin{split} \partial_{\mu}J^{\mu\nu\rho} &= 0, \\ J^{\mu\nu\rho} &= \underbrace{x^{\nu}\Theta^{\mu\rho} - x^{\rho}\Theta^{\mu\nu}}_{\text{orbital AM}} + \underbrace{\Sigma^{\mu\nu\rho}}_{\text{spin AM}} \\ \Rightarrow & \partial_{\mu}\Sigma^{\mu\nu\rho}(x) = \Theta^{\rho\nu} - \Theta^{\nu\rho} \end{split}$$

- Thus spin is a true hydro mode (conserved quantity) only when $\Theta^{\mu\nu}$ is symmetric.
 - In general, not possible. The anti-symmetric part of $\Theta^{\mu\nu}$ is a torque acting on spin.
 - Such torque is spin-orbit coupling (SOC). For example, for Dirac fermions, SOC $\propto 1/m$ and thus vanishes at heavy fermion limit.
- ▶ The transfer of AM between spin part and orbital part is generally dissipative.

The spin hydro regime

When spin relaxation rate $\Gamma_s \ll$ relaxation rate Γ of other micro modes (Hongo, XGH, Kaminski, Stephanov, and Yee 2107.14231):

► An extended hydro framework for pure hydro modes and slow spin modes ⇒ Relativistic dissipative spin hydrodynamics

Ambiguity in defining spin current

• The definition of spin current $\Sigma^{\mu\nu\rho}$ (and thus $\Theta^{\mu\nu}$) is ambiguous.

 Pseudo-gauge transformation: Transformations that preserve total charges and conservation laws (Becattini, Florkowski, and Speranza 1807.10994)

$$\begin{split} \Sigma^{\mu\nu\rho} &\to \Sigma^{\mu\nu\rho} - \Phi^{\mu\nu\rho}, \\ \Theta^{\mu\nu} &\to \Theta^{\mu\nu} + (1/2)\partial_\lambda \left(\Phi^{\lambda\mu\nu} - \Phi^{\mu\lambda\nu} - \Phi^{\nu\lambda\mu}\right) \end{split}$$

- Formulation of spin hydro depends on the choice of pseudo-gauge:
 - Non-canonical gauge, $\Sigma^{\mu\nu\rho}=u^{\mu}\sigma^{\nu\rho}+\cdots$ (Florkowski *et al.* 1705.00587, Montenegro *et al.* 1701.08263, Hattori *et al.* 1901.06615, Fukushima and Pu 2010.01608, Li *et al.* 2011.12318, Gallegos *et al.* 2203.05044, She *et al.* 2105.04060, Flowkowski *et al.*, 2405.03263, \cdots)
 - ▶ Canonical gauge $\Sigma^{\mu\nu\rho} = \varepsilon^{\mu\nu\rho\gamma}\sigma_{\gamma}$ (Hongo et al. 2107.14231, Bhadury et al. 2002.03937, Hongo et al. 2201.12390, Cao et al. 2205.08051, Duan et al. 2505.01814, Fang et al. 2506.20698. · · ·)
 - Symmetric gauge $\Theta^{\mu\nu} = \Theta^{\nu\mu}$ (Bhadury et al. 2008.10976, Abboud et al. 2506.19786, Drogosz et al., 2506.01537, ...)

Ambiguity in defining spin current

- ▶ One way to fix the pseudo-gauge: Couple to Einstain-Cartan gravity.
- ▶ Reminder: If a global symmetry G of $S[\varphi]$ can be gauged into $S[\varphi,A]$, the gauge current of G is

$$J^{\mu} = \frac{\delta S[\varphi, A]}{\delta A_{\mu}}.$$

For Poincare group with translation P^a and Lorentz transformation M^{ab} , it can be gauged by promoting

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - ie_{\mu}{}^{a}P_{a} - \frac{i}{2}\omega_{\mu}{}^{ab}M_{ab},$$

$$\Rightarrow \qquad [D_{\mu}, D_{\nu}] = -iT^{a}{}_{\mu\nu}P_{a} - \frac{i}{2}R^{ab}{}_{\mu\nu}M_{ab}.$$

- ▶ The geometric interpretation of $e_{\mu}{}^{a}$, $\omega_{\mu}{}^{ab}$, $T^{a}{}_{\mu\nu}$, $R^{ab}{}_{\mu\nu}$ are vierbein, spin connection, torsion, and curvature tensor of Einstein-Cartan spacetime.(Sciama 1962, Kibble 1961, Hehl et al 1976)
- ▶ Energy-momentum tensor and spin current:

$$\Theta^{\mu}_{a}(x) \equiv \frac{1}{e(x)} \left. \frac{\delta S}{\delta e_{\mu}^{\ a}(x)} \right|_{\omega}, \quad \Sigma^{\mu}_{\ ab}(x) \equiv -\frac{2}{e(x)} \left. \frac{\delta S}{\delta \omega_{\mu}^{\ ab}(x)} \right|_{e}.$$

Ambiguity in defining spin current

▶ For QCD, these are

$$\Theta_{a}^{\mu} = \frac{1}{2} \bar{q} (\gamma^{\mu} \overrightarrow{D}_{a} - \overleftarrow{D}_{a} \gamma^{\mu}) q + 2 \operatorname{tr} (G^{\mu\rho} G_{a\rho}) + \mathcal{L}_{QCD} e_{a}^{\mu},$$

$$\Sigma_{ab}^{\mu} = -\frac{i}{2} \bar{q} e_{c}^{\mu} \{ \gamma^{c}, \Sigma_{ab} \} q$$

- ▶ This corresponds to the canonical pseudo-gauge. The spin current is totally anti-symmetric so it contains 3 independent variables.
- Diffeomorphism and local Lorentz invanriance give Ward-Takahashi identities ($G_{\mu}=T^{\nu}_{\ \nu\mu}$)

$$(D_{\mu} - G_{\mu})\Theta^{\mu}_{a} = -\Theta^{\mu}_{b}T^{b}_{\mu a} + \frac{1}{2}\Sigma^{\mu}_{b}{}^{c}R^{b}_{c\mu a},$$

$$(D_{\mu} - G_{\mu})\Sigma^{\mu}_{ab} = -(\Theta_{ab} - \Theta_{ba})$$

▶ Turning off background geometry gives the conservation laws:

$$\partial_{\mu}\Theta^{\mu\nu}(x) = 0$$
, $\partial_{\mu}\Sigma^{\mu\nu\rho}(x) = \Theta^{\rho\nu} - \Theta^{\nu\rho}$

▶ Spin hydrodynamics = A quasi-hydrodynamic framework for pure hydro modes + slow spin modes with fixed pseudo-gauge

How to construct spin hydrodynamics?

Construction of spin hydro

▶ Step 1: Identify the conservation laws (symmetries)

Energy-momentum conservation:
$$\partial_{\mu}\Theta^{\mu\nu}(x)=0$$

Agular momentum conservation: $\partial_{\mu}\Sigma^{\mu\nu\rho}(x)=\Theta^{\rho\nu}-\Theta^{\nu\rho}$

- ▶ Step 2: Choose a pseudo-gauge (e.g., anti-symmetric gauge)
- Step 3: Identify the (quasi-)hydro modes
 - ▶ Seven (quasi-)hydro modes: ϵ , u^a , σ_a (or $\sigma_{ab} = -\varepsilon_{abcd}u^c\sigma^d$) with constraints $u^2 = -1$, $\sigma^a u_a = 0$.
 - First law of local thermodynamics: $Tds = d\epsilon \mu^a d\sigma_a$.
 - Conjugate variables: inverse temperature $\beta \equiv \frac{\partial s}{\partial \epsilon}$, spin chemical potential $\mu^a = -T\frac{\partial s}{\partial \sigma}$ (or $\mu^{ab} = -2T\frac{\partial s}{\partial \sigma}$).
- ▶ Step 4: Power counting schemes
 - Scheme I:

$$\{\beta, u^a\} = O(\partial^0)$$
 and $\{\mu^a, \sigma_a, \omega_{\mu\nu} \equiv \nabla_{[\mu} u_{\nu]}\} = O(\partial)$

Scheme II:

$$\{\beta, u^a, \mu^a, \sigma_a, \omega_{\mu\nu} \equiv \nabla_{[\mu} u_{\nu]}\} = O(\partial^0)$$

Construction of spin hydro

▶ Step 5: Tensor decomposition (Landau-Lifshitz frame)

$$\begin{split} \Theta^{\mu}_{\ a} &= \epsilon u^{\mu} u_a + p \Delta^{\mu}_a + u^{\mu} \delta q_a - \delta q^{\mu} u_a + \delta \Theta^{\mu}_{\ a} \\ \Sigma^{\mu}_{\ ab} &= \varepsilon^{\mu}_{\ abc} (\sigma^c + \delta \sigma u^c) \\ s^{\mu} &= s u^{\mu} + \delta s^{\mu} \end{split}$$

▶ Step 7: Entropy production $[O(\partial)$ terms give Gibbs-Duhem relation]

$$\partial_{\mu}s^{\mu} = -\delta\Theta^{\mu}_{a}\big|_{(s)}\nabla_{\mu}\beta^{a} - \delta\Theta^{\mu}_{a}\big|_{(a)}(\nabla_{\mu}\beta^{a} - \beta\mu_{\mu}^{a}) + O(\partial^{3})$$

Step 6: Second law of thermodynamics $\partial_{\mu} s^{\mu} \geq 0$ \Rightarrow First-order constitutive relations $(\Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu})$:

$$\begin{split} \delta\Theta^{\mu}_{\ a}\big|_{(s)} &= -\left[\eta\left((\Delta^{\mu\nu}\Delta_{ab} + \Delta^{\mu}_{b}\Delta^{\nu}_{a}) - \frac{2}{3}\Delta^{\mu}_{a}\Delta^{\nu}_{b}\right) + \zeta\Delta^{\mu}_{a}\Delta^{\nu}_{b}\right]\nabla_{\nu}u^{b} \\ \delta\Theta^{\mu}_{\ a}\big|_{(a)} &= -\frac{1}{2}\eta_{s}(\Delta^{\mu\nu}\Delta_{ab} - \Delta^{\mu}_{b}\Delta^{\nu}_{a})(\omega_{\nu}^{\ b} - \mu_{\nu}^{\ b}) \end{split}$$

with $\eta \geq 0$ shear, $\zeta \geq 0$ bulk, and $\eta_s \geq 0$ rotational viscosities.

▶ The conservation-law equations turn to spin hydro equations. An equation of state $p = p(\epsilon, \sigma_a)$ should be input to close the equations.

Linearized spin hydrodynamics

▶ Perturbation about global static thermal equilibrium

$$\partial_0 \delta \epsilon + \partial_i \delta \pi^i = 0.$$

$$\partial_0 \delta \pi_i + c_s^2 \partial_i \delta \epsilon - \gamma_{\parallel} \partial_i \partial^j \delta \pi_j - (\gamma_{\perp} + \gamma_s) (\delta_i^j \nabla^2 - \partial_i \partial^j) \delta \pi_j + \frac{1}{2} \Gamma_s \varepsilon_{0ijk} \partial^j \delta \sigma^k = 0,$$

$$\partial_0 \delta \sigma_i + \Gamma_s \delta \sigma_i + 2\gamma_s \varepsilon_{0ijk} \partial^j \delta \pi^k = 0$$

where we introduced a set of static/kinetic coefficients as

$$\begin{split} c_s^2 &\equiv \frac{\partial p}{\partial \epsilon}, \quad \gamma_\parallel \equiv \frac{1}{\epsilon_0 + p_0} \left(\zeta + \frac{4}{3} \eta \right), \quad \gamma_\perp \equiv \frac{\eta}{\epsilon_0 + p_0}, \\ \chi_s \delta_{ij} &\equiv \frac{\partial \sigma_i}{\partial \mu^j}, \quad \gamma_s \equiv \frac{\eta_s}{2(\epsilon_0 + p_0)}, \quad \Gamma_s \equiv \frac{2\eta_s}{\chi_s} \end{split}$$

 By diagonalizing these coupled linear equations, one obtains the dispersion relations of (quasi-)hydro modes.

Linearized spin hydrodynamics

- Dispersion relations (Hattori et al. 1901.06615, Hongo et al. 2107.14231, Yang and Yan 2410.07583, · · ·)
 - One pair of sound modes: $\omega_{\text{sound}}(\mathbf{k}) = \pm c_s |\mathbf{k}| \frac{i}{2} \gamma_{\parallel} \mathbf{k}^2 + O(\mathbf{k}^3),$
 - One longitudinal spin mode : $\omega_{\text{spin},\parallel}(\mathbf{k}) = -i\Gamma_s$,

 - Two shear modes: $\omega_{\rm shear}(\boldsymbol{k}) = -i\gamma_{\perp}\boldsymbol{k}^2 + O(\boldsymbol{k}^4),$ Two transverse spin modes: $\omega_{\rm spin,\perp}(\boldsymbol{k}) = -i\Gamma_s i\gamma_s\boldsymbol{k}^2 + O(\boldsymbol{k}^4).$

Mode mixing between shear and transverse spin mode: One gradient can affect two modes.

Transport coefficients

Viscosities (Wilson coefficients) are characteristic parameters of matter. For example, shear viscosity of QGP:

▶ The new rotational viscosity η_s characterized local spin relaxation:

Kubo formulas for rotational viscosity

Spin hydrodynamic retarded spin-spin correlator

$$\tilde{G}_{R}^{\sigma^{i}\sigma^{j}}(\omega, \mathbf{k}) = \frac{i\chi_{s}\Gamma_{s} + \cdots}{\omega + i\Gamma_{s} + O(\mathbf{k}^{2})}\delta^{ij}$$

▶ Recall the scale separation condition:

$$\delta\Theta^{\mu}_{a|(a)} = \begin{cases} -(\eta_s)^{\mu}_{ab}(\nabla_{\nu}u^b - \mu_{\nu}^b) & \text{when } \Gamma_s \ll \omega \ll \Gamma, \\ 0 & \text{when } \omega \ll \Gamma_s \end{cases}$$

The spin hydrodynamic spin-spin correlator gives:

$$\omega \tilde{G}_{R}^{\sigma^{i}\sigma^{j}}(\omega, \mathbf{k} = 0) = \frac{i\chi_{s}\omega\Gamma_{s}}{\omega + i\Gamma_{s}}\delta^{ij} \xrightarrow{\Gamma_{s}\ll\omega\ll\Gamma} 2i\eta_{s}$$

Field theoretical Kubo formula for rotational viscosity

$$\eta_s = \frac{1}{2} \lim_{\Gamma_s \ll \omega \ll \Gamma} \omega \operatorname{Im} \tilde{G}_{\mathbf{R}}^{\sigma^z \sigma^z}(\omega, \mathbf{0}) = 2 \lim_{\Gamma_s \ll \omega \ll \Gamma} \frac{1}{\omega} \operatorname{Im} \tilde{G}_{\mathbf{R}}^{\Theta_{(a)}^{xy} \Theta_{(a)}^{xy}}(\omega, \mathbf{0})$$

• Another Kubo formula at $\omega \to 0$ can also be derived:

$$\frac{\chi_s^2}{2\eta_s} = \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \tilde{G}_{R}^{\sigma^z \sigma^z}(\omega, \mathbf{0})$$

Spin relaxation rate at heavy quark limit

▶ For QCD, at heavy quark limit and leading-log approximation

$$\mathcal{L} = -M\psi^{\dagger}\psi + i\psi^{\dagger}D_{0}\psi - \frac{1}{2M}(\mathbf{D}\psi)^{\dagger} \cdot \mathbf{D}\psi + \frac{g}{2M}\psi^{\dagger}(\mathbf{B} \cdot \boldsymbol{\sigma})\psi + \mathcal{L}_{gluon} + \mathcal{O}(1/M^{2})$$

$$\chi_s \Gamma_s = \frac{1}{6T} \delta^{\mathrm{ab}} G_{12}^{\Theta_{\mathrm{a}}\Theta_{\mathrm{b}}} (\mathbf{r}_{s \ll k^0 \ll \Gamma}) = \frac{g^2}{12M^2T} \delta^{\mathrm{ab}} \lim_{k^0 \to 0} \mathrm{Tr} \left[\underbrace{\frac{k^0}{1}}_{\mathbf{i} \epsilon_{\mathrm{ai}j} q^i \sigma^j} \underbrace{\frac{p+q}{q}}_{-\mathbf{i} \epsilon_{\mathrm{b}kl} q^k \sigma^l} \right]$$

 \blacktriangleright Spin relaxation rate Γ_s for heavy quark (Hongo et al. 2201.12390)

$$\Gamma_s \equiv \frac{2\eta_s}{\gamma_s} = \frac{N_c^2 - 1}{2N_c} \frac{g^2 m_D^2 T}{6\pi M^2} \ln \frac{1}{g}$$

Kinetic theory expressions for transport coefficients in spin hydrodynamics: (Wagner 2409.07143, Daher et al. 2503.03713)

When strong vorticity is present

▶ Rotating fluid could be at global thermal equilibrium

(at thermal equilibrium)

$$\frac{dN_s}{d\boldsymbol{p}} \sim e^{-(H_0 - \boldsymbol{\omega} \cdot \boldsymbol{S})/T}$$

$$S = \frac{N_{\uparrow} - N_{\downarrow}}{2(N_{\uparrow} + N_{\downarrow})} \sim \frac{\omega}{4T}$$

▶ Power counting scheme II (Cao et al. 2205.08051):

$$\{\beta, u^a, \mu^a, \sigma_a, \omega_{\mu\nu} \equiv \nabla_{[\mu} u_{\nu]}\} = O(\partial^0)$$

Anisotropy in ideal constitutive relation: Gyrohydrodynamics

$$\Theta^{\mu}_{a(0)} = \epsilon u^{\mu} u_a + p_{\perp} \Delta^{\mu}_a + (p_{\parallel} - p_{\perp}) \hat{\omega}^{\mu} \hat{\omega}_a$$

▶ Similar to magnetohydrodynamics

When strong vorticity is present

Anisotropy in dissipative constitutive relation (Cao et al. 2205.08051):

$$\begin{split} \delta\Theta^{(\mu\nu)} &= -T\eta^{\mu\nu\rho\sigma}\partial_{(\rho}\beta_{\sigma)} - T\xi^{\mu\nu\rho\sigma}(\partial_{[\rho}\beta_{\sigma]} - \beta\mu_{\rho\sigma}), \\ \delta\Theta^{[\mu\nu]} &= -T\gamma^{\mu\nu\rho\sigma}(\partial_{[\rho}\beta_{\sigma]} - \beta\mu_{\rho\sigma}) - T\xi'^{\mu\nu\rho\sigma}\partial_{(\rho}\beta_{\sigma)} \end{split}$$

- ▶ 14 viscosities: 3 bulk, 4 shear, 3 rotational, and 4 cross viscosities
- Among them, 7 are Hall-type viscosities.
- Cross viscosites appears also in liquid crystals.
- ▶ When applied to HICs, how to convert velocity, temperature, spin chemical potential into hadron observables?

How to apply spin hydrodynamics to heavy-ion collisions?

Freeze-out of particle number

▶ Cooper-Frye type formula converts hydro outcomes to momentum space distributions.

$$N(p) = \int d\Xi_{\mu} \frac{p^{\mu}}{E_p} f(T(x), u^{\mu}(x), \mu(x))$$

We need a similar formula to connect spin hydro with obervables.

 $T(x), u^{\alpha}(x), \mu(x), \mu_{\alpha\beta}(x)$

Freeze-out of spin polarization

 Such a formula at local equilibrium can be obtained via e.g. kinetic theory or local Gibbs density operator with same type of pseudo-gauge as spin hydro

$$\hat{\rho}_{\rm LE} = \frac{1}{Z_{\rm LE}} \exp \left\{ -\int d\Xi_{\mu}(y) \left[\hat{\Theta}^{\mu\nu}(y) \beta_{\nu}(y) - \frac{1}{2} \hat{\Sigma}^{\mu\rho\sigma}(y) \mu_{\rho\sigma}(y) \right] \right\}$$

 Spin Cooper-Frye formula for Dirac fermions at local equilibrium (Buzzegoli 2109.12084, Liu and Huang 2109.15301)

$$\begin{split} \bar{S}_{\mu}(p) &= \bar{S}_{5\mu}(p) - \frac{1}{8 \int d\Xi \cdot p} \int d\Xi \cdot p \frac{n_F (1 - n_F)}{E_p} \\ &\times \left\{ \epsilon_{\mu\nu\alpha\beta} p^{\nu} \mu^{\alpha\beta} + 2 \frac{\varepsilon_{\mu\nu\rho\sigma} p^{\rho} n^{\sigma}}{p \cdot n} \left[p_{\lambda} (\xi^{\nu\lambda} + \Delta \mu^{\nu\lambda}) + \partial^{\nu} \alpha \right] \right\} \end{split}$$

▶ Here, $\xi_{\mu\nu} = \partial_{(\mu}\beta_{\nu)}$ is thermal shear and $\Delta\mu_{\alpha\beta} = \mu_{\alpha\beta} + \partial_{[\mu}\beta_{\nu]}$ is the difference between spin chemical potential and thermal vorticity.

Freeze-out of spin polarization

▶ Spin Cooper-Frye formula for Dirac fermions

$$\bar{S}_{\mu}(p) = \bar{S}_{5\mu}(p) - \frac{1}{8 \int d\Xi \cdot p} \int_{R_F} d\Xi \cdot p \frac{n_F (1 - n_F)}{E_p} \times \left\{ \epsilon_{\mu\nu\alpha\beta} p^{\nu} \mu^{\alpha\beta} + 2 \frac{\varepsilon_{\mu\nu\rho\sigma} p^{\rho} n^{\sigma}}{p \cdot n} \left[p_{\lambda} (\xi^{\nu\lambda} + \Delta \mu^{\nu\lambda}) + \partial^{\nu} \alpha \right] \right\}$$

- \bar{S}_5^{μ} is the polarization induced by finite chirality (Liu *et al.* 2002.03753, Shi *et al.* 2008.08618, Buzzegoli *et al.* 2009.13449, Gao 2105.08293)
- When $\Delta\mu_{\alpha\beta}=0$, namely, when spin chemical potential is given by thermal vorticity. It goes to previous results (Liu and Yin 2103.09200, Becattini *et al.* 2103.10917)
- When global equilibrium is reached $\Delta\mu_{\alpha\beta}=0=\xi_{\alpha\beta}$, it goes to previous results (Becattini *et al.* 1303.3431, Fang *et al.* 1604.04036, Liu *et al.* 2002.03753)
- It is accurate at $O(\partial)$.
- n^{μ} is a unit frame vector to specify helicity.
- Out of local equilibrium, collisions induce additional contribution (Lin and Wang 2206.12573)
- With this formula, we can convert spin hydro into momentum space spin polarization.

Recent numerical efforts

 Under the approximation of small spin polarization, neglecting feedback of spin degrees of freedom to the background fluid evolution:(Sapna et al. 2503.22552)

Summary

Summary

- Spin polarization and spin transport are common in a number of physical systems.
- It is possible to formulate a (quasi-)hydrodynamic theory for spin transports.
- ▶ The first-order dissipative spin hydrodynamics has been constructed.
- ▶ The Cooper-Frye type spin polarization formula is obtained.
- Numerical spin hydrodynamics.
- Spin Cooper-Frye formula for vector mesons.
- Higher-order and causal spin hydrodynamics.
- Anomalous spin hydrodynamics.
-

Thank you!