

26th International Symposium on Spin Physics

A Century of Spin

@青島!!

Physics-informed neural networks for angular momentum conservation in computational relativistic spin hydrodynamics

Hidefumi Matsuda (Zhejiang University)

Koichi Hattori (Zhejiang University)

Koichi Murase (Tokyo Metropolitan University)

- 1. Background
- 2. Methodology
- 3. Numerical Demonstration
- 4. Summary and Outlook

- 1. Background
- 2. Methodology
- 3. Numerical Demonstration
- 4. Summary and Outlook

Numerical Challenges in Angular Momentum Conservation

• Finite Volume Method with Godunov's scheme is widely used in computational hydrodynamics, which enables solving continuity equations ($\partial_{\mu}\Theta^{\mu\nu}=0$, $\partial_{\mu}J_{\rm B}^{\mu}=0$) while preserving associated conservation laws within numerical accuracy.

• *However*, angular momentum conservation is generally not guaranteed in this scheme...

→ Exploration of complementary numerical strategies

Physics-Informed Neural Networks (PINNs)

M. Raissi, et.al. (2019).

- Neural network approximate solutions of given partial differential equation (PDE): $\mathbf{\mathcal{F}}[f(t,\vec{x})] = 0$
- Loss function = PDE + boundary condition (B.C.) + optional constraint
- Active development of applications in hydrodynamics
 M. Raissi, et.al. (2020); Z. Mao, et.al. (2020); X. Jin, et.al. (2021); S. Cai, et. al. (2021).

Physics-Informed Neural Networks (PINNs)

M. Raissi, et.al. (2019).

- Neural network approximate solutions of given partial differential equation (PDE): $\mathbf{\mathcal{F}}[f(t,\vec{x})] = 0$
- Loss function = PDE + boundary condition (B.C.) + optional constraint
- Active development of applications in hydrodynamics
 M. Raissi, et.al. (2020); Z. Mao, et.al. (2020); X. Jin, et.al. (2021); S. Cai, et. al. (2021).

Physics-Informed Neural Networks (PINNs)

M. Raissi, et.al. (2019).

- Neural network approximate solutions of given partial differential equation (PDE): $\mathbf{\mathcal{F}}[f(t,\vec{x})] = 0$
- Loss function = PDE + boundary condition (B.C.) + Angular momentum (AM) conservation
- Active development of applications in hydrodynamics
 M. Raissi, et.al. (2020); Z. Mao, et.al. (2020); X. Jin, et.al. (2021); S. Cai, et. al. (2021).

This Study

- In this study, we build a PINNs-based framework for relativistic spin hydrodynamics
- As a proof of concept, we consider a simple setup: 2nd order relativistic spin fluid confined in a cylinder, with symmetry assumptions that reduce the problem to two dimensions (t, r).

- Cylindrical symmetry
- **✓** Translational symmetry along the *z*-direction
- ✓ Parity symmetry with respect to the *z*-axis

- 1. Background
- 2. Methodology
- 3. Numerical Demonstration
- 4. Summary and Outlook

Relativistic Spin Hydrodynamic Equation

W. Florkowski, et.al. (2018). X.-G. Huang (2024). [Review]

$$e(t,r)$$
.

$$u^{r}(t,r)$$
,

$$u^{\theta}(t,r)$$
,

$$e(t,r), \quad u^r(t,r), \quad u^{\theta}(t,r), \quad S^z(t,r) (\equiv \Sigma^{txy}), \quad \phi^{r\theta}(t,r)$$

$$\phi^{r\theta}(t,r)$$

Tensor Decompositions (Landau frame and Totally antisymmetric pseudo gauge) $\Theta^{\mu\nu} = eu^{\mu}u^{\nu} + P\Delta^{\mu\nu} + \phi^{\mu\nu}$

$$J^{\mu\nu\xi} = (x^{\nu} \Theta^{\mu\xi} - x^{\xi} \Theta^{\mu\nu}) + \Sigma^{\mu\nu\xi}$$

Hydrodynamic Equations (Continuity Equations and Constitutive Relations)

$$\nabla_{\mu}\Theta^{\mu t} = 0, \qquad \nabla_{\mu}\Theta^{\mu x} = 0, \qquad \nabla_{\mu}\Theta^{\mu y} = 0, \qquad \nabla_{\mu}J^{\mu xy} = 0$$

$$\tau_{\phi}\Delta^{r}{}_{\alpha}\Delta^{\theta}{}_{\beta}D\phi^{xy} = -2\gamma\rho^{xy} - \phi^{xy} - \frac{2\tau_{\phi}}{3}(\nabla \cdot u)\phi^{xy}$$
(Muller-Israel-Stewart Relaxation)

I. Muller (1967); W. Israel (1976); W. Israel and J. M. Stewart (1976,1979)

Specific Design of PINNs

Input (2 neurons): t, r

Output (5 neurons): NN_1, NN_2, \dots, NN_5

e. g.
$$e(t,r) \approx e(t=0,r) + NN_1(t,r) - NN_1(t=0,r)$$

Loss Function: $L(\psi) = L_{\text{Hydro}}(\psi) + L_{\text{B.C.}}(\psi) + L_{\text{AM}}(\psi)$ e. g. simplest loss form $L(\psi) = \sum_{i} \langle R_{\text{Hydro},i} \rangle^{2} + \sum_{i} \langle R_{\text{B.C.},i} \rangle^{2} + \sum_{i} \langle R_{\text{AM.},i} \rangle^{2}$ $\langle \rangle$: spacetime average

Residual

- $R_{\text{Hydro},i}$: hydrodynamic equations, e. g. $\nabla_{\mu} \Theta^{\mu\nu}(t,r)$
- $R_{\text{B.C.},i}$: Dirichlet boundary condition, e. g. $\partial_r u^r(t, r = R)$
- $R_{\text{AM},i}$: local AM conservation, $\nabla_{\mu}J^{\mu xy}(t,r)$ global AM conservation, $\int dr \, r \, J^{txy}(t,r) \int dr \, r \, J^{txy}(t=0,r)$

- 1. Background
- 2. Methodology
- 3. Numerical Demonstration
- 4. Summary and Outlook

- 1. Background
- 2. Methodology
- 3. Numerical Demonstration
 - 3-1. Verification
 - 3-2. Application
- 4. Summary and Outlook

Verification: Setup

Calculation Setup

- Hidden layer: 1
- Neuron (hidden layer): 250
- Collocation points: 75,000
- Activation function: tanh
- Optimizer: Adam

Physics Setup

Initial condition

$$e(t=0,r) = \bar{e},$$

$$u^{r}(t=0,r) = 0,$$

$$u^{\theta}(t=0,r) = \delta_{1} \cdot \sin^{4}\left(\frac{\pi r}{R}\right),$$

$$S^{z}(t=0,r) = 0,$$

$$\phi^{r\theta}(t=0,r) = 0,$$

Boundary condition

Dirichlet type:

All variables for r = 0 and u^r , s^z , $\phi^{r\theta}$ for r = R

Neumann: $\partial_r u^r$, $\partial_r \phi^{r\theta}$ for r = R

Parameters

\bar{e}	1
R	1
t_{max}	0.15
γ_{ϕ}	2
$\gamma_{\phi} \ au_{\phi}$	2
δ_1	0.2

Verification: Results

1.0008

1.0006

1.0004

0.9998

0.9996

0.9994

0.05

10⁰

Residual for Hydro eq. 10-2

 $\sum_{i} \frac{\int dr(2\pi r) \left| R_{\text{Hydro},i} \right|^2}{\text{Volume}}$

Net angular momentum_{1.0002}

$$\frac{\int dr \, r \, J^{txy}(t,r)}{\int dr \, r J^{txy}(t=0,r)}$$

Angular momentum conserved within 0.1%

0.1 0.15

Application: Setup

Case 1. Orbital Initial Condition

Motivated by QGP in high-energy heavy-ion collisions

$$e(t = 0, r) = \bar{e}$$
,
 $u^{r}(t = 0, r) = 0$,
 $u^{\theta}(t = 0, r) = \delta_{1} \cdot \sin^{4}\left(\frac{\pi r}{R}\right)$,
 $S^{z}(t = 0, r) = 0$,
 $\phi^{r\theta}(t = 0, r) = 0$.

\bar{e}	1
R	1
$t_{ m max}$	0.4
γ_{ϕ}	0, 2
$ au_{\phi}$	γ_{ϕ}
δ_1	0.2

Case 2. Spin Initial Condition

✓ Motivated by Einstein-de Haas effect

$$e(t = 0, r) = \bar{e},$$

$$u^{r}(t = 0, r) = 0,$$

$$u^{\theta}(t = 0, r) = 0,$$

$$S^{z}(t = 0, r) = \delta_{2} \cdot \sin^{4}\left(\frac{\pi r}{R}\right),$$

$$\phi^{r\theta}(t = 0, r) = 0.$$

$$\begin{array}{c|c}
\bar{e} & 1 \\
R & 1 \\
t_{\text{max}} & 0.4 \\
\gamma_{\phi} & 2 \\
\tau_{\phi} & 2 \\
\delta_{2} & 0.2
\end{array}$$

Application: Net AM

Case 1. Orbital Initial Condition

 \checkmark Orbital-to-Spin AM conversion at $\gamma = 2$

Case 2. Spin Initial Condition

 \checkmark Spin-to-Orbital AM conversion at $\gamma = 2$

Application: Heatmap of AM

Case 1. Orbital Initial Condition

Generated spin has opposite signs for r > 0.5R and r < 0.5R

Case 2. Spin Initial Condition

Generated orbital spin has opposite signs for r > 0.5R and r < 0.5R

Application: Discussion

• Rotational viscous correction is generated by the difference between transversely projected thermal vorticity (ϖ_{\perp}) and spin potential $(\omega^{\mu\nu})$

Application: Conversion Process

Case 1. Orbital Initial Condition

 I^{z}

0.6

0.8

0.06

0.02

-0.02

Case 2. Spin Initial Condition

- 1. Background
- 2. Methodology
- 3. Numerical Demonstration
- 4. Summary and Outlook

Summary & Outlook

Summary

- We have developed a PINNs-based framework for relativistic spin hydrodynamics.
- Angular momentum conservation is found to be successfully enforced in the training process.
- Our proof-of-concept simulations have demonstrated orbital—spin angular momentum conversion, which is driven by the rotational effect.
- Our demonstration has illustrated that the rotational viscous effect in second-order viscous hydrodynamics can be interpreted as a friction between a rotating fluid cell and the surrounding rotational flow.

Outlook

- Compare with linear analyses to deepen the understanding of nonlinear effects
- Examine system behavior when treating spin potential and thermal vorticity at zeroth order, or when incorporating second-order effects such as those induced by a boosted heat current
- Apply the framework to the analysis of high-energy heavy-ion collisions (long-term goal)