
Physics-informed neural networks for angular momentum 
conservation in computational relativistic spin hydrodynamics

Hidefumi Matsuda (Zhejiang University)

Koichi Hattori (Zhejiang University)

Koichi Murase (Tokyo Metropolitan University)

@青島!!



1. Background 

2. Methodology

3. Numerical Demonstration

4. Summary and Outlook

Table of Contents



1. Background 

2. Methodology

3. Numerical Demonstration

4. Summary and Outlook

Table of Contents



Numerical Challenges in 

Angular Momentum Conservation

• Finite Volume Method with Godunov’s scheme is widely used in computational hydrodynamics, 

which enables solving continuity equations (𝜕𝜇Θ
𝜇𝜈 = 0, 𝜕𝜇𝐽B

𝜇
= 0) while preserving associated 

conservation laws within numerical accuracy.

• However, angular momentum conservation is generally not guaranteed in this scheme…

→ Exploration of complementary numerical strategies
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Physics-Informed Neural Networks (PINNs)

Input layer Hidden
layer

Output layer

𝓕 𝑓(𝑡, Ԧ𝑥) = 0• Neural network approximate solutions of given partial differential equation (PDE): 

• Loss function = PDE + boundary condition (B.C.) + optional constraint

• Active development of applications in hydrodynamics  

𝑓1 𝑡, 𝑥, 𝑦 , 𝑓2 𝑡, 𝑥, 𝑦 ≈
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M. Raissi, et.al. (2019).

M. Raissi, et.al. (2020); Z. Mao, et.al. (2020); X. Jin, et.al. (2021); S. Cai, et. al. (2021).
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layer
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𝓕 𝑓(𝑡, Ԧ𝑥) = 0• Neural network approximate solutions of given partial differential equation (PDE): 

• Loss function = PDE + boundary condition (B.C.) + Angular momentum (AM) conservation

• Active development of applications in hydrodynamics  
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This Study

𝑧 𝑦

𝑥

• In this study, we build a PINNs-based framework for relativistic spin hydrodynamics

• As a proof of concept, we consider a simple setup: 2nd order relativistic spin fluid confined 

in a cylinder, with symmetry assumptions that reduce the problem to two dimensions (𝑡, 𝑟). 

✔Cylindrical symmetry

✔ Translational symmetry along the z-direction

✔ Parity symmetry with respect to the z-axis
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Relativistic Spin Hydrodynamic Equation

Hydrodynamic Variables

𝑒(𝑡, 𝑟), 𝑢𝑟(𝑡, 𝑟), 𝑢𝜃(𝑡, 𝑟), 𝑆𝑧(𝑡, 𝑟)(≡ Σ𝑡𝑥𝑦), 𝜙𝑟𝜃(𝑡, 𝑟)

Tensor Decompositions (Landau frame and Totally antisymmetric pseudo gauge)

𝛩𝜇𝜈 = 𝑒𝑢𝜇𝑢𝜈 + 𝑃Δ𝜇𝜈 + 𝜙𝜇𝜈

𝐽𝜇𝜈𝜉 = (𝑥𝜈𝛩𝜇𝜉 − 𝑥𝜉𝛩𝜇𝜈) + Σ𝜇𝜈𝜉

Hydrodynamic Equations (Continuity Equations and Constitutive Relations)

∇𝜇𝛩
𝜇𝑡 = 0, ∇𝜇𝛩

𝜇𝑥 = 0, ∇𝜇𝛩
𝜇𝑦 = 0, ∇𝜇𝐽

𝜇𝑥𝑦 = 0

𝜏𝜙Δ 𝛼
𝑟 Δ 𝛽

𝜃 𝐷𝜙𝑥𝑦 = −2𝛾𝜌𝑥𝑦 − 𝜙𝑥𝑦 −
2𝜏𝜙

3
∇ ⋅ 𝑢 𝜙𝑥𝑦

𝑧 𝑦

𝑥

(Muller-Israel-Stewart Relaxation)
I. Muller (1967); W. Israel (1976); W. Israel and J. M. Stewart (1976,1979) 

W. Florkowski, et.al. (2018).

X.-G. Huang (2024). [Review]



Specific Design of PINNs

Input (2 neurons) :  𝑡, 𝑟

Output (5 neurons) :  𝑁𝑁1, 𝑁𝑁2, ⋯ , 𝑁𝑁5

e. g. 𝑒 𝑡, 𝑟 ≈ 𝑒 𝑡 = 0, 𝑟 + 𝑁𝑁1 𝑡, 𝑟 − 𝑁𝑁1 𝑡 = 0, 𝑟

Loss Function :  𝐿 𝜓 = 𝐿Hydro 𝜓 + 𝐿B.C. 𝜓 + 𝐿A𝑀 𝜓

e. g.   simplest loss form

𝐿 𝜓 = σ𝑖 𝑅Hydro,𝑖
2
+ σ𝑖 𝑅B.𝐶.,𝑖

2
+ σ𝑖 𝑅AM.,𝑖

2

Residual

• 𝑅Hydro,𝑖:  hydrodynamic equations, e. g. ∇𝜇𝛩
𝜇𝜈(𝑡, 𝑟)

• 𝑅B.C.,𝑖 : Dirichlet boundary condition, e. g. 𝜕𝑟𝑢
𝑟(𝑡, 𝑟 = 𝑅)

• 𝑅AM,𝑖 : local AM conservation, ∇𝜇𝐽
𝜇𝑥𝑦 𝑡, 𝑟

global AM conservation, ∫ 𝑑𝑟 𝑟 𝐽𝑡𝑥𝑦 𝑡, 𝑟 − ∫ 𝑑𝑟 𝑟 𝐽𝑡𝑥𝑦 𝑡 = 0, 𝑟

: spacetime average
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Verification: Setup

• Initial condition

• Boundary condition

Dirichlet type: 

All variables for 𝑟 = 0 and   𝑢𝑟 , 𝑠𝑧 , 𝜙𝑟𝜃 for 𝑟 = 𝑅

Neumann: 𝜕𝑟𝑢
𝑟 , 𝜕𝑟𝜙

𝑟𝜃 for 𝑟 = 𝑅

• Parameters

• Hidden layer: 1

• Neuron (hidden layer): 250

• Collocation points: 75,000

• Activation function: tanh

• Optimizer: Adam

Calculation Setup Physics Setup



Verification: Results

✔Convergence of training
Loss function

𝐿(𝜓)

Residual for Hydro eq.

σ𝑖

∫ 𝑑𝑟(2𝜋𝑟) 𝑅Hydro,𝑖
2

Volume ✔ Small Violation

Net angular momentum
∫ 𝑑𝑟 𝑟 𝐽𝑡𝑥𝑦 𝑡,𝑟

∫ 𝑑𝑟 𝑟𝐽𝑡𝑥𝑦 𝑡=0,𝑟
✔Angular momentum conserved within 0.1%



Application: Setup

Case 1. Orbital Initial Condition

Case 2. Spin Initial Condition

✔Motivated by QGP

in high-energy heavy-ion collisions

✔Motivated by Einstein-de Haas effect

Z.-T. Liang and X.-N. Wang (2005).

A. Einstein and W. De Haas (1915).



Application: Net AM

Case 1. Orbital Initial Condition

Case 2. Spin Initial Condition

✔Orbital-to-Spin AM conversion at 𝛾 = 2

✔ Spin-to-Orbital AM conversion at 𝛾 = 2



Application: Heatmap of AM

Case 1. Orbital Initial Condition

Case 2. Spin Initial Condition

✔Generated spin has opposite signs 

for 𝑟 > 0.5𝑅 and 𝑟 < 0.5𝑅

✔Generated orbital spin has opposite signs 

for 𝑟 > 0.5𝑅 and 𝑟 < 0.5𝑅



Application: Discussion

• Rotational viscous correction is generated by the difference

between transversely projected thermal vorticity (𝜛⊥) and spin potential (𝜔𝜇𝜈)

source term



Application: Conversion Process

Case 1. Orbital Initial Condition

Case 2. Spin Initial Condition

Initial 𝝕 generate 𝝓 𝝓 generate 𝑺𝒛

Initial 𝝎 generate 𝝓 𝝓 generate 𝑳𝒛
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Summary ＆ Outlook

Summary

• We have developed a PINNs-based framework for relativistic spin hydrodynamics.

• Angular momentum conservation is found to be successfully enforced in the training process.

• Our proof-of-concept simulations have demonstrated orbital–spin angular momentum conversion, 

which is driven by the rotational effect.

• Our demonstration has illustrated that the rotational viscous effect in second-order viscous hydrodynamics can be 

interpreted as a friction between a rotating fluid cell and the surrounding rotational flow.

Outlook

• Compare with linear analyses to deepen the understanding of nonlinear effects

• Examine system behavior when treating spin potential and thermal vorticity at zeroth order, or when incorporating 

second-order effects such as those induced by a boosted heat current

• Apply the framework to the analysis of high-energy heavy-ion collisions (long-term goal)


