Overview of Upcoming MOLLER Experiment at Jefferson Lab

HUONG NGUYEN

UNIVERSITY OF VIRGINIA

ON BEHALF OF THE MOLLER COLLABORATION

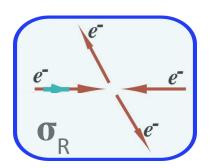
24 SEPTEMBER 2025

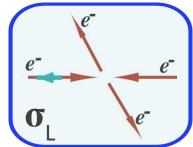
Overview of MOLLER Experiment at Jefferson Lab Outline

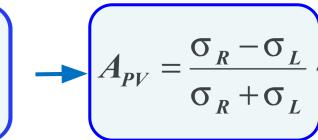
- MOLLER: Measurement Of a Lepton Lepton Electroweak Reaction
- The Physics Goals & Experimental Method
- Key Features of MOLLER Apparatus
- MOLLER Schedule & Outlook

The Main Objective of MOLLER Experiment

Precision determination of electroweak mixing angle at low energy ($Q^2 \ll MZ$)


Running weak mixing angle in the MS-bar scheme


- Precision examination of the electron's weak charge through the measurement of parity violating (PV) asymmetry at low momentum transfer
 - + Helping to resolve differences between previous measurements of $\sin^2\!\theta_w \text{ or find interesting new effects}$
 - Indirect search for new dynamics
 beyond the Standard Model with
 unique sensitivity to TeV scale physics


The MOLLER Observable

Parity- violating asymmetry A_{PV} in Møller Scattering

Asymmetry in cross-section of electrons with helicity ±1/2 scattered off unpolarized electron

- Incident beam is longitudinally polarized
- → Change sign of longitudinal polarization
- → Measure fractional rate difference
- A_{PV} is determined from interference between the exchange of photon and a Z-boson in scattering

ullet Weak mixing angle $oldsymbol{ heta}_{
m w}$

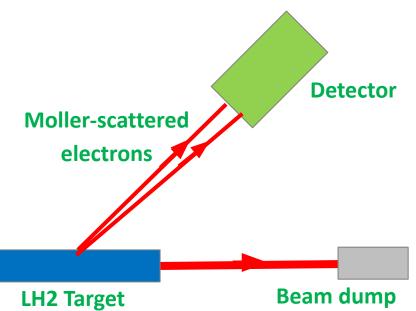
$$\mathbf{Q_W^e} = \mathbf{1} - \mathbf{4}\sin^2\theta_{\mathbf{W}}$$

MOLLER Physics Reach Probe Physics at multi-TeV scale via A_{PV} precise measurement

- MOLLER is optimized for ultra-high precision measurement of A_{PV} at low energy:
 - Momentum transfer: $Q^2 = 5.8 \times 10^{-3} \text{ GeV}^2$
 - Projected A_{PV} at MOLLER's kinematics: $A_{PV} \sim 32 \text{ ppb}$; $\Delta A_{PV} \sim 0.8 \text{ ppb}$
- MOLLER offers an unique new physics reach
 - Exploits pure Leptonic weak neutral current interaction at low Q²
 - Theoretical prediction can be calculated accurately with negligible uncertainty from hadronic physics
- Sensitive to interaction amplitudes as small as $1.5 \times 10^{-3} \times G_F$
- Extend the reach for new dynamics
 beyond SM to mass scale Λ/g ~7.5 TeV

MOLLER Experimental Method Measurement principle

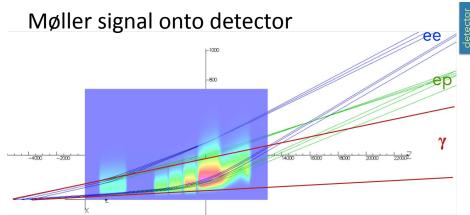
- CEBAF provides a longitudinally polarized electron beam with helicity rapidly flipped: $E_b = 11 \text{ GeV}$, $I_b = 65 \mu\text{A}$, $f_{flip} = 1.92 \text{ kHz}$
- Polarized beam electrons impinge on unpolarized Polarized electron beam LH2 target oriented along the beam direction:

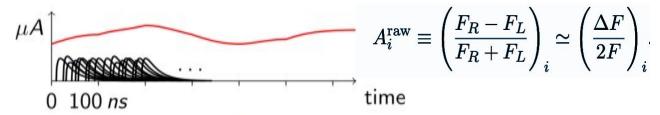

$$L_{\text{taget}} = 125 \text{ cm}, P_{20K} = 35 \text{ psia}, \mathcal{L} = 2.4 \times 10^{39} \text{ cm}^{-2} \text{ s}^{-1}$$

Here the stage is a second second by the spectrometer system and focused onto

- integrating detector system at expected rate R ~ 130 GHz
- Measure Integrated flux of Møller-scattered electrons during each period of the left- and right-handed beam helicities to evaluate scattering asymmetry for each pair of helicity windows:

$$A_i^{
m raw} \equiv \left(rac{F_R - F_L}{F_R + F_L}
ight)_i \simeq \left(rac{\Delta F}{2F}
ight)_i.$$

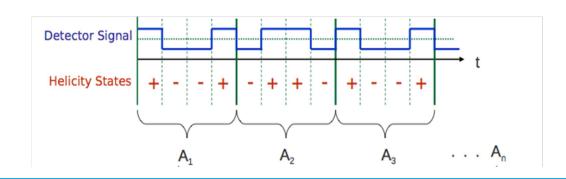

 $A_i^{
m raw} \equiv \left(rac{F_R - F_L}{F_R + F_L}
ight) \simeq \left(rac{\Delta F}{2F}
ight)$ ightharpoonup A sections and indicates a region of the average measured asymmetry, with corrections applied to account for experimental effects


MOLLER Experimental Method

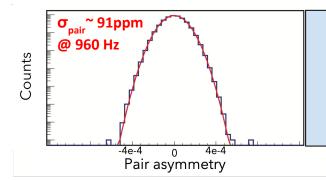
Flux integration technique for A_{PV} measurement

• Map E- θ correlation to focus

Integration of analog detector current



Correct raw measured asymmetry for the experimental conditions

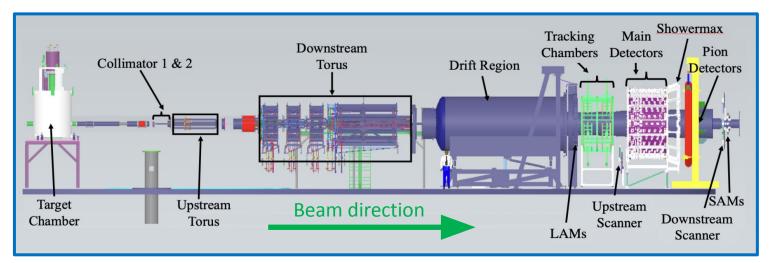

changing rapidly:

 $\left(A_{cxpt}\right)_{i} = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_{i} - \sum_{j} \left(\boldsymbol{\alpha}_{j} \left(\Delta X_{j}\right)_{i}\right)$

Rapid measurement over helicity reversals

Pulse-pair asymmetry distribution A expt

- Central value reflects A_{phys}
- σ_{pair} is parameter that
 determine statistical error


Critical Factors in MOLLER Experimental Design

- Experimental design driven by the precision goals for measuring expected A_{PV} ~ 32 ppb:
 - 2% statistical & 1% systematic uncertainty
- High luminosity and acceptance <u>Møller Rate</u> ~ <u>130 GHz</u>
 - High intensity and polarization beam:
 65 μA beam current at 11 GeV with 90% polarization
 - 125cm long LH2 target
 - \circ Full azimuthal acceptance with θ_{lab}^{\sim} 5 20 mrad
- Control noise <u>91 ppm at 960 Hz</u>
 - Stable beam and target
 - Rapid beam helicity flip
 - Precision monitoring and calibration
 - Low noise detectors and R/O electronics

- Controlling Systematic Uncertainty
 - Acceptance/Optics calibration
 - Monitoring sources of background
 - Beam monitoring, control and calibration
 - Polarimetry & "spin reversal" tool
- Integrate time 344 beam days
 - Radiation resistance for materials and electronics
- MOLLER at JLab
 - JLab has 25 years of high precision PVES experiments
 - MOLLER collaboration: 40+years of experience with E158, Qweak, PREX/CREX

MOLLER Apparatus Overview

- Target System:
- Liquid hydrogen target for production run
- Solid targets for calibration
- Spectrometer System
- Collimators
- 7-fold symmetric toroidal magnet system
- Main Integrating Detectors: Main system to handle the primary asymmetry measurement
- <u>Tracking Detectors</u>: Provides the diagnostic power for calibration; GEM tracking planes covering the full relevant polar and azimuthal ranges.
- Auxiliary detectors: Cross-check Møller flux measurement; measure pion backgrounds; Monitor beam or other background asymmetries.

- Polarized Beam, Monitoring and Diagnostics: keep total asymmetry correction close the goal for statistical precision
- <u>Polarimetry:</u> Use two polarimeters to X-checked measurement of beam polarization at 0.4% precision
- DAQ and Trigger: supports both counting & integrating modes for detector systems & beam diagnostic monitors

MOLLER Operational Parameters & Run Phases

Parameter	Value
E [GeV]	≈ 11.0
E^\prime [GeV]	2.0 - 9.0
$ heta_{ m CM}$	50°-130°
$ heta_{ m lab}$	0.26°-1.2°
$\langle Q^2 angle$ [GeV 2]	0.0058
Maximum Current [μ A]	70
Target Length (cm)	125
ρ_{tgt} [g/cm ³] (T= 20K, P = 35 psia)	0.0715
Max. Luminosity $[cm^{-2} sec^{-1}]$	$2.4 \cdot 10^{39}$
σ [μ barn]	≈ 60
Møller Rate @ 65 μ A [GHz]	≈ 134
Statistical Width(1.92 kHz flip) [ppm/pair]	pprox 91
Target Raster Size [mm × mm]	5×5
Production running time	344 PAC-days = 8256 hours
ΔA_{raw} [ppb]	pprox 0.54
Background Fraction	≈ 0.10
$P_{ m B}$	$\approx 90\%$
$\langle A_{PV} angle$ [ppb]	pprox 32
$\Delta A_{stat}/\langle A_{expt} angle$	2.1%
$\delta(\sin^2 heta_W)_{stat}$	0.00023

MOLLER targeted three run phases

Run	PAC Days	Calendar Weeks	
Period	(prod)	(prod)	(calib)
I	14	5	6
II	95	27	3
III	235	56	4
Total	344	88	13

- Allow time for improving hardware & fix problems uncovered during calibration
- Opportunity to improve calibration and refine run planning

MOLLER Projected Precision of A_{PV} Measurement

Statistical uncertainty

- Statistical power of A_{PV} measurement:
- Based on precision of measurements made with a pair of integration periods σ_{pair}
- Statistical uncertainty estimate for measured asymmetry:

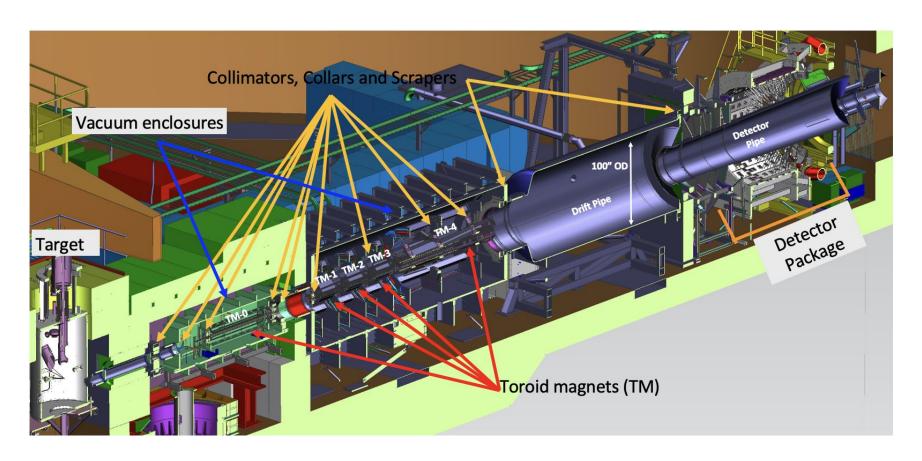
$$\sigma_{A_{cxpt}} = \frac{\sigma_{pair}}{\sqrt{N_{pair}}}$$

- A_{pv} statistical uncertainty
- \circ Correct $\sigma_{A^{expt}}$ for experimental effects to translate it to statistical uncertainty on A_{PV}

• Projected contributions to σ_{pair} at 1920 Hz helicity reversal rate

Parameter	Random Noise (65 μ A)
Statistical width (0.5 ms)	\sim 82 ppm
Target Density Fluctuation	30 ppm
Beam Intensity Resolution	10 ppm
Beam Position Noise	7 ppm
Detector Resolution (25%)	21 ppm (3.1%)
Electronics noise	10 ppm
Measured Width (σ_{pair})	91 ppm

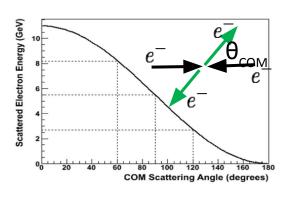
$$\frac{\sigma_{expt}}{A_{expt}} = 2.1 \, (\%) \rightarrow \frac{\delta_{PV}}{A_{PV}} = 2.4 \, (\%)$$

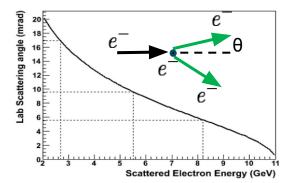

MOLLER Projected Precision of A_{PV} Measurement

Systematic Uncertainties

- Projected leading systematic
 uncertainties on A_{PV}
- The ultimate uncertainties to be achieved progressively with operational experience

Error Source	Fractional Error (%)	
	Run 1	Ultimate
Statistical	11.4	2.1
Absolute Norm. of the Kinematic Factor	3	0.5
Beam (second moment)	2	0.4
Beam polarization	1	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	2	0.4
Beam (position, angle, energy)	2	0.4
Beam (intensity)	1	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.6	0.3
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	1.5	0.3
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.3	0.15
Transverse polarization	2	0.2
Neutral background (soft photons, neutrons)	0.5	0.1
Linearity	0.1	0.1
Total systematic	5.5	1.1

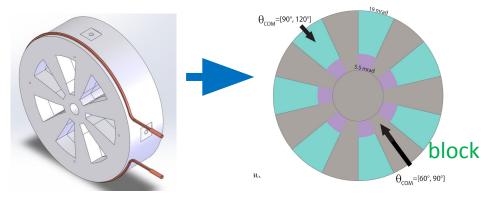

MOLLER Spectrometer Cutaway

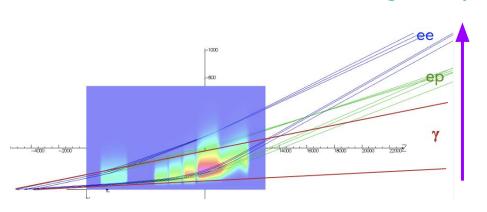


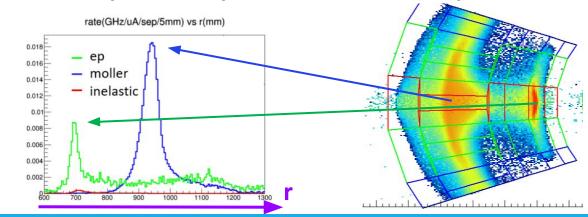
- Collimators to define the acceptance and to reject scattering from the exhaust beam
- Five toroidal magnets with 7-fold symmetry to focus Møller scattered electrons & reject backgrounds

MOLLER Spectrometer Design

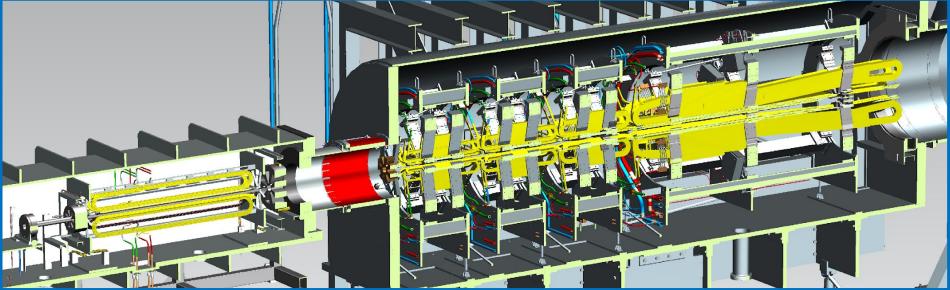
- Acceptance collimators
- Collimates exhaust beam
- FOM optimized for: $\theta_{COM} = 90^{\circ} \pm 30^{\circ}$

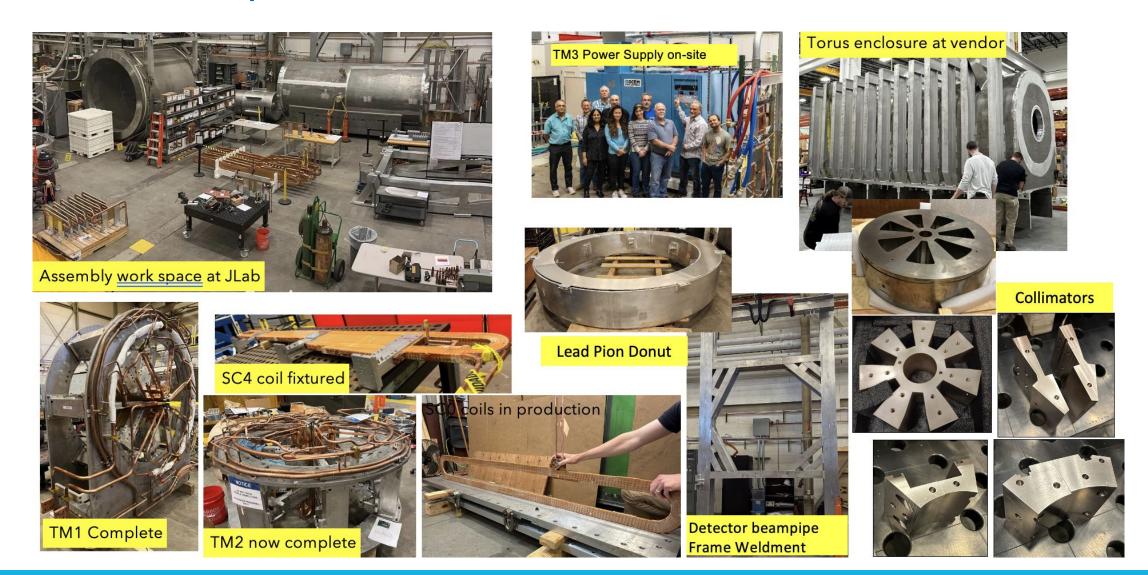


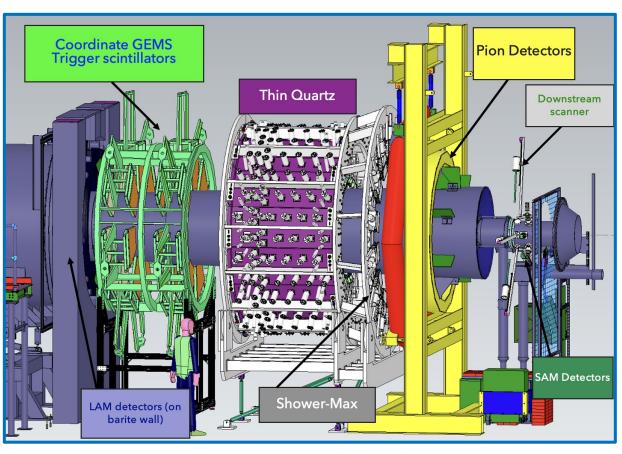

- Select scattered electron: $\theta_{lab} = 5 18 \text{ mrad}$
- Select either forward or backward Møller scattered


electron

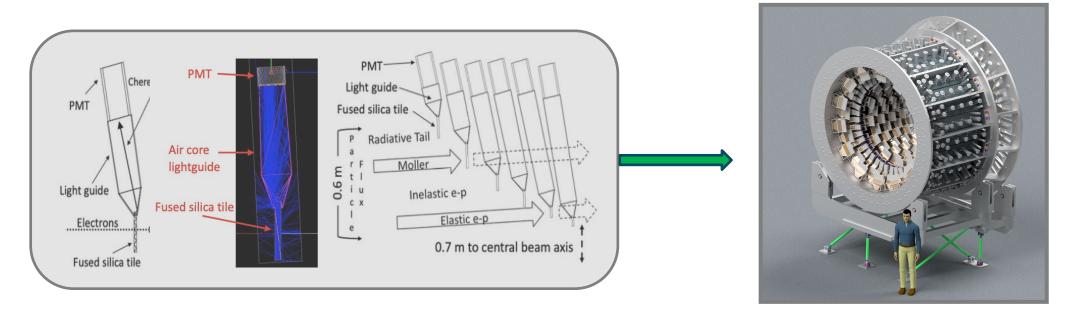
Blocks 50% of azimuth open


• Azimuthal field from toroidal magnet separates e-e, e-p elastic, ep-inelastic at detector plane

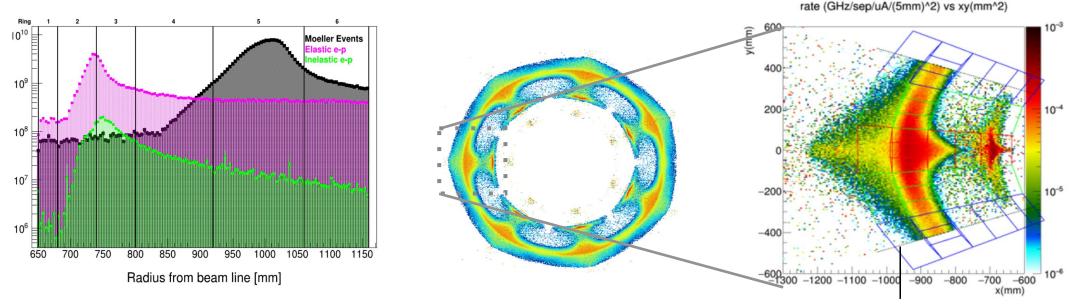

MOLLER Spectrometer Magnetic Design


Optimized for azimuthal acceptance to focus electrons with small scattering angles corresponding momentum range $3 \le E' \le 8$ GeV from a long (125 cm) target

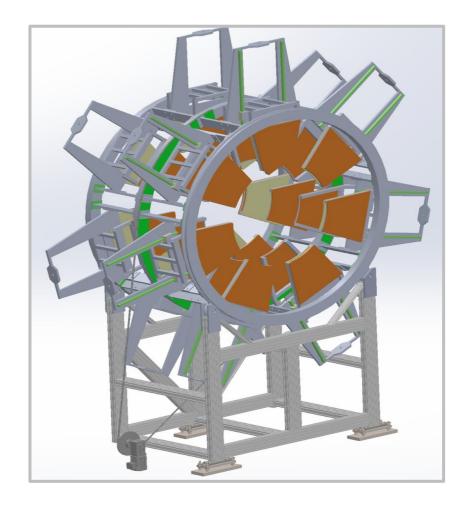
MOLLER Spectrometer Construction


MOLLER Detector Package

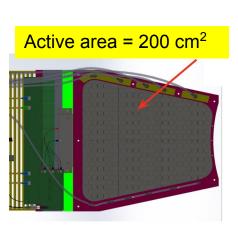
- Detector readout modes :
- Current mode: for asymmetry measurement at high rate
- Counting mode: for calibration & bkgs study at low rate

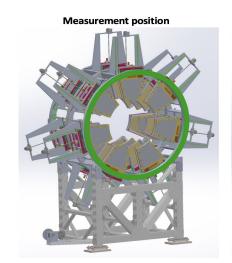

- Main integrating detector: "Thin Quartz"
- Radially and azimuthally segmented to optimize Møller signal resolution & quantify background contributions
- Operate in both current & counting modes
- Tracking detector
- Read out in counting mode
- Consists of GEM planes & trigger scintillators
- Provides diagnostic power to calibrate spectrometer optic & acceptance and verify response function of Quartz detector
- Auxiliary Detectors

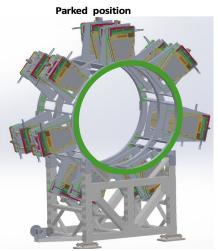
MOLLER Main Integrating Detector

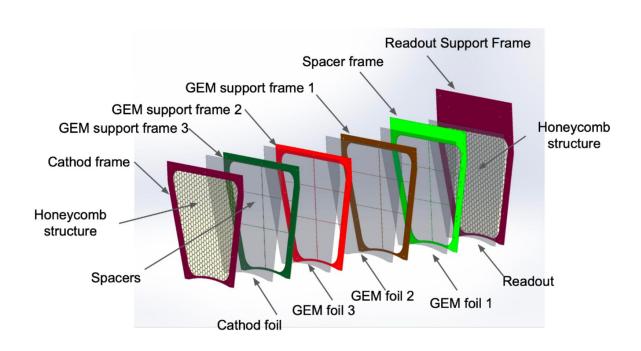

- Each element comprises quartz Cherenkov radiators ,light guide and PMT
- Require both radial and azimuthal segmentation to follow kinematic separation created by spectrometer
- Radial segmentation into six rings: Møller peak centered in Ring 5 & e-p peak found in Ring 2
- Ring 5 is azimuthally segmented into 84 elements

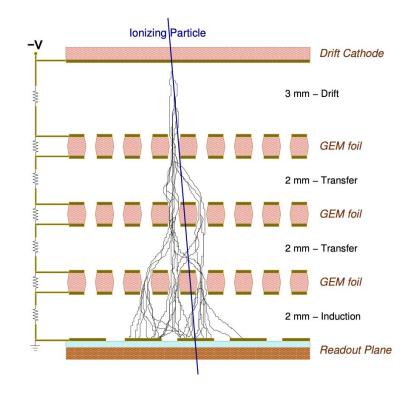
Capturing the Scattered Flux at Main Detector

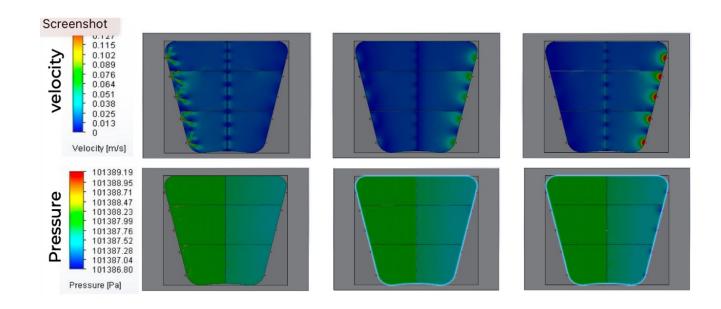


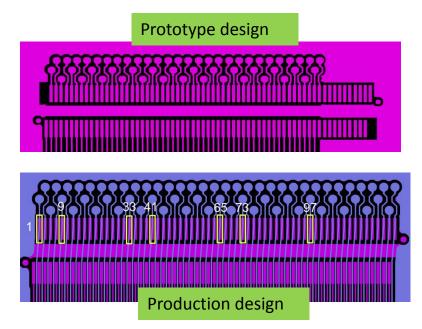

- Segmentation of the main detector plane enables azimuthal and radial binning
 - → allowing deconvolution of the asymmetries from the various background processes
- The rate at the Møller peak is significantly higher than the average rate (1 MHz/mm² vs. 50 kHz/mm²)
- Calibration with tracking detectors at low beam current and continuous monitoring of detector asymmetry widths during normal operation will improve magnetic field modelling
 - → more accurate rate distributions.


MOLLER GEM Tracking System


- Consist of four Gas Electron Multiplier (GEM) planes & each plane has seven GEM modules of 200cm² active area
- Operate in counting mode during dedicated low beam-current runs for calibration and kinematic verification
- Being removed from the immediate path of the scattered flux during full beam-current runs to avoid radiation damages

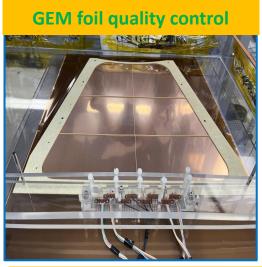



GEM Module Design

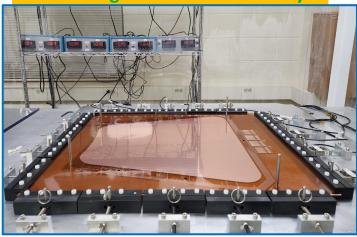


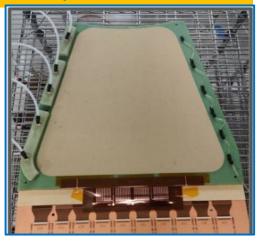
- GEM Design for MOLLER builds on recent experience with triple-GEM detectors for SBS tracking system at JLab
- High flux capability, good position resolution
- Thin curved inner-edge allows GEM active area getting closer to beam pipe to cover full acceptance

GEM Module Gas Simulation & Noise Suppression


- Consistent gas flow is achieved inside the detector
- Ensure uniform gain & efficiency
- Avoid pressure buildups inside the

- Observed higher noise levels on the first 7 APV channels due to crosstalk from APV header
- Redesign readout board so that the noisy channels are not connected to a detector readout strip.


MOLLER Tracking Detector: Construction & Testing



X-Ray 2D Cluster Distribution

Stretching GEM foil for assembly

Completed GEM module

Cosmic 2D Cluster Distribution

- One prototype and 28 production modules
- Optimized GEM design for MOLLER
- Modules are tested with X-Ray & Cosmic
- X-Ray test: confirm working sectors and R/O functionality
- Cosmic test: confirm the gain uniformity & eficiency

MOLLER Status & Outlook

- MOLLER has great potential to make significant physics impacts
- Engineering Design complete: final technical design report is public
- Acquisitions ongoing and Construction has begun
- Installation: 2025-2026
- Commissioning: Early 2027
- Physics Analysis through 2029 and beyond
- Incoming MOLLER activities of UVA Detectors Lab:
- ☐ Installation and Commissioning Tracking detector
- Join collaboration efforts on running experiment and performing physics analysis
- □ Looking for two (2)Graduate Students and (1) Postdoc to join our team!

Thank you for your attention!

CONTACT: HTN3R@VIRGINIA.EDU