ALESSANDRO BACCHETTA, PAVIA U. AND INFN

MAINLY BASED ON RESULTS OBTAINED WITH

Valerio Bertone

Matteo Cerutti

Simone Rodini

Chiara Bissolotti

Filippo Delcarro

Lorenzo Rossi

Alessia Bongallino

Fulvio Piacenza

Andrea Signori

Finanziato
dall'Unione europea
NextGenerationEU

Giuseppe Bozzi

Marco Radici

MAP24: extraction of unpolarized TMDs with flavor dependence (<u>arXiv:2405.13833</u>)

- MAP24: extraction of unpolarized TMDs with flavor dependence (arXiv:2405.13833)
- MAPTMDNN: proof-of-concept extraction of unpolarized TMDs with NN (<u>arXiv:2502.04166</u>)

- MAP24: extraction of unpolarized TMDs with flavor dependence (arXiv:2405.13833)
- MAPTMDNN: proof-of-concept extraction of unpolarized TMDs with NN (<u>arXiv:2502.04166</u>)
- ▶ MAPTMDpol: extraction of helicity TMDs (<u>arXiv:2409.18078</u>)

TMDS IN DRELL-YAN PROCESSES

TMDS IN DRELL-YAN PROCESSES

The analysis is usually done in Fourier-transformed space

TMDS IN DRELL-YAN PROCESSES

The analysis is usually done in Fourier-transformed space TMDs formally depend on two scales, but we set them equal.

TMDS IN SEMI-INCLUSIVE DIS (SIDIS)

CONTRIBUTIONS TO TRANSVERSE MOMENTUM

"intrinsic"
transverse
momentum

CONTRIBUTIONS TO TRANSVERSE MOMENTUM

"intrinsic"
transverse
momentum

soft and collinear gluon radiation

CONTRIBUTIONS TO TRANSVERSE MOMENTUM

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \mu, \zeta) = \int d^2\boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^a(x, \boldsymbol{k}_\perp^2; \mu, \zeta)$$

$$\hat{f}_1^a(x,|\boldsymbol{b}_T|;\mu,\zeta) = \int d^2\boldsymbol{k}_\perp e^{i\boldsymbol{b}_T\cdot\boldsymbol{k}_\perp} f_1^a(x,\boldsymbol{k}_\perp^2;\mu,\zeta)$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)} \left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text{resum}}}$$

$$\hat{f}_1^a(x,|\boldsymbol{b}_T|;\mu,\zeta) = \int d^2\boldsymbol{k}_\perp e^{i\boldsymbol{b}_T\cdot\boldsymbol{k}_\perp} f_1^a(x,\boldsymbol{k}_\perp^2;\mu,\zeta)$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)} \left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text{resum}}}$$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_T}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

$$\hat{f}_1^a(x,|\boldsymbol{b}_T|;\mu,\zeta) = \int d^2\boldsymbol{k}_\perp e^{i\boldsymbol{b}_T\cdot\boldsymbol{k}_\perp} f_1^a(x,\boldsymbol{k}_\perp^2;\mu,\zeta)$$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu} \left(\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu}\right)} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}}\right)^{K_{\text{resum}}}$ collinear PDF

 $u_b = \frac{2e^{-r_b}}{b_T}$ matching coefficients (perturbative)

Collins-Soper kernel

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

perturbative Sudakov

form factor

$$\hat{f}_1^a(x,|\boldsymbol{b}_T|;\mu,\zeta) = \int d^2\boldsymbol{k}_\perp e^{i\boldsymbol{b}_T\cdot\boldsymbol{k}_\perp} f_1^a(x,\boldsymbol{k}_\perp^2;\mu,\zeta)$$

form factor

$$\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu} \left(\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu}\right)} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}}\right)^{K_{\text{resum}}}$$

$$\text{collinear PDF}$$

 $b = \frac{b_T}{b_T}$ matching coefficients (perturbative)

Collins-Soper kernel

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

perturbative Sudakov

$$\hat{f}_1^a(x,|\boldsymbol{b}_T|;\mu,\zeta) = \int d^2\boldsymbol{k}_\perp e^{i\boldsymbol{b}_T\cdot\boldsymbol{k}_\perp} f_1^a(x,\boldsymbol{k}_\perp^2;\mu,\zeta)$$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = \left[C \otimes f_1\right](x, \mu_{b_*}) e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu} \left(\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu}\right)} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}}\right)^{K_{\text{resum}} + g_K}$

collinear PDF

 $\mu_b = \frac{2e^{-\gamma_E}}{b_T}$

 $= \frac{b_T}{b_T}$ matching coefficients (perturbative)

Collins-Soper kernel (perturbative and nonperturbative)

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

perturbative Sudakov

form factor

$$\hat{f}_1^a(x,|\boldsymbol{b}_T|;\mu,\zeta) = \int d^2\boldsymbol{k}_\perp e^{i\boldsymbol{b}_T\cdot\boldsymbol{k}_\perp} f_1^a(x,\boldsymbol{k}_\perp^2;\mu,\zeta)$$

form factor

$$\hat{f}_1^a(x,b_T^2;\mu_f,\zeta_f) = [C \otimes f_1](x,\mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu} \left(\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu}\right)} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}}\right)^{K_{\mathrm{resum}} + g_K} f_{1NP}(x,b_T^2;\zeta_f,Q_0)$$

$$\text{collinear PDF}$$

 $b_{T} = \frac{2e^{-\gamma_{E}}}{b_{T}}$ matching coefficients (perturbative)

Collins-Soper kernel nonperturbative part (perturbative and nonperturbative)

perturbative Sudakov

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

	Accuracy	PDF uncertainty	flavor dependence	SIDIS	DY	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL	×	×			8059	1.55

	Accuracy	PDF uncertainty	flavor dependence	SIDIS	DY	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL	×	×			8059	1.55
SV 2019 arXiv:1912.06532	N ₃ LL-	×	×			1039	1.06
MAP22 arXiv:2206.07598	N ₃ LL-	×	×			2031	1.06

⁻ not all ingredients are available

	Accuracy	PDF uncertainty	flavor dependence	SIDIS	DY	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL	×	×			8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL-	×	*			1039	1.06
MAP22 arXiv:2206.07598	N ³ LL-	×	*			2031	1.06
MAP24 arXiv:2405.13833	N ³ LL					2031	1.08

⁻ not all ingredients are available

	Accuracy	PDF uncertainty	flavor dependence	SIDIS	DY	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL	×	×			8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL-	*	×			1039	1.06
MAP22 arXiv:2206.07598	N ³ LL-	*	*			2031	1.06
MAP24 arXiv:2405.13833	N ³ LL					2031	1.08
ART25 arXiv:2503.11201	N ⁴ LL-					1209	1.05

⁻ not all ingredients are available

	Accuracy	PDF uncertainty	flavor dependence	SIDIS	DY	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL	×	×			8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL-	*	×			1039	1.06
MAP22 arXiv:2206.07598	N ³ LL-	*	*			2031	1.06
MAP24 arXiv:2405.13833	N ³ LL					2031	1.08
ART25 arXiv:2503.11201	N ⁴ LL-					1209	1.05

⁻ not all ingredients are available

see next talk by V. Moos

MAP24 GLOBAL FIT: x-Q² COVERAGE

MAP24 <u>arXiv:2405.13833</u>

MAP24 GLOBAL FIT: x-Q² COVERAGE

MAP24 GLOBAL FIT: DESCRIPTION OF THE DATASETS

	$ m N^3LL$					
Data set	$N_{ m dat}$	χ^2_D	χ^2_{λ}	χ_0^2		
Tevatron total	71	1.10	0.07	1.17		
LHCb total	21	3.56	0.96	4.52		
$ATLAS \ total$	72	3.54	0.82	4.36		
$CMS\ total$	78	0.38	0.05	0.43		
PHENIX 200	2	2.76	1.04	3.80		
STAR 510	7	1.12	0.26	1.38		
DY collider total	251	1.37	0.28	1.65		
${ m E288~200~GeV}$	30	0.13	0.40	0.53		
$E288~300~{\rm GeV}$	39	0.16	0.26	0.42		
E288 400 GeV	61	0.11	0.08	0.19		
E772	53	0.88	0.20	1.08		
E605	50	0.70	0.22	0.92		
DY fixed-target total	233	0.63	0.31	0.94		
$HERMES\ total$	344	0.81	0.24	1.05		
$COMPASS\ total$	1203	0.67	0.27	0.94		
SIDIS total	1547	0.70	0.26	0.96		
Total	2031	0.81	0.27	1.08		

MAP24 <u>arXiv:2405.13833</u>

EXAMPLE OF RESULTING TMDS

EXAMPLE OF RESULTING TMDS

normalized to the same value at $k_{\perp}=0$

EXAMPLE OF RESULTING TMDS

X DEPENDENCE

X DEPENDENCE

WIDENING WITH INCREASING SCALE

WIDENING WITH INCREASING SCALE

COLLINS-SOPER KERNEL

COLLINS-SOPER KERNEL

NEURAL-NETWORK FOR TMDS

MAPNN <u>arXiv:2502.04166</u>

$$f_{\text{NP}}(x, b_T; \zeta) = \frac{\mathbb{NN}(x, b_T)}{\mathbb{NN}(x, 0)} \exp\left[-g_2^2 b_T^2 \log\left(\frac{\zeta}{Q_0^2}\right)\right]$$

41 parameters + 1 parameter for CS kernel

PROOF-OF-CONCEPT EXTRACTION

MAPNN <u>arXiv:2502.04166</u>

Experiment	$N_{ m dat}$	$\overline{\chi}^2 \left(\overline{\chi}_D^2 + \overline{\chi}_\lambda^2 \right)$	
		NN	MAP22
Fixed-target	233	1.08 (0.98 + 0.10)	0.91 (0.70 + 0.21)
RHIC	7	1.11 (1.03 + 0.07)	1.45 (1.37 + 0.08)
Tevatron	71	0.80 (0.73 + 0.06)	1.20 (1.17 + 0.04)
LHCb	21	0.98 (0.88 + 0.10)	1.25 (1.05 + 0.20)
CMS	78	$0.40 \ (0.38 + 0.02)$	0.41 (0.35 + 0.06)
ATLAS	72	1.38 (1.09 + 0.29)	3.51 (3.03 + 0.49)
Total	482	0.97 (0.86 + 0.11)	1.28 (1.09 + 0.20)

PROOF-OF-CONCEPT EXTRACTION

MAPNN <u>arXiv:2502.04166</u>

Experiment	$N_{ m dat}$	$\overline{\chi}^2 \left(\overline{\chi}_D^2 + \overline{\chi}_\lambda^2 \right)$	
		NN	MAP22
Fixed-target	233	1.08 (0.98 + 0.10)	0.91 (0.70 + 0.21)
RHIC	7	1.11 (1.03 + 0.07)	1.45 (1.37 + 0.08)
Tevatron	71	0.80 (0.73 + 0.06)	1.20 (1.17 + 0.04)
LHCb	21	0.98 (0.88 + 0.10)	1.25 (1.05 + 0.20)
CMS	78	0.40 (0.38 + 0.02)	0.41 (0.35 + 0.06)
ATLAS	72	1.38 (1.09 + 0.29)	3.51 (3.03 + 0.49)
Total	482	0.97 (0.86 + 0.11)	1.28 (1.09 + 0.20)

COMPARISON WITH ART25

comparison in b_T space

ART25 <u>arXiv:2503.112021</u>, see talk by V. Moos

COMPARISON WITH ART25

comparison in b_T space

There are significant differences between different extractions.

The error bands are probably underestimated

ART25 <u>arXiv:2503.112021</u>, see talk by V. Moos

ART25 <u>arXiv:2503.112021</u>, see talk by V. Moos

comparison in b_T space

There are significant differences between different extractions.

The error bands are probably underestimated

COMPARISON WITH ART25

ART25 <u>arXiv:2503.112021</u>, see talk by V. Moos

comparison in b_T space

 $\frac{b(\mathrm{GeV}^{-1})}{\text{There are significant differences between different extractions.}}$

The error bands are probably underestimated

Even larger differences in the Fragmentation Functions

COMPARISON WITH ART25: CS KERNEL

COMPARISON WITH LATTICE QCD: CS KERNEL

TMD phenomenology

Lattice QCD

CONNECTIONS WITH LATTICE QCD: TMDS

LPC collaboration, arxiv:2211.02340

At a fixed value of x

At a fixed value of x

We try to always impose positivity limits (hep-ph/9912490). We prefer rigid and physical to flexible and unphysical

At a fixed value of x

We try to always impose positivity limits (hep-ph/9912490). We prefer rigid and physical to flexible and unphysical

At a fixed value of x

We try to always impose positivity limits (hep-ph/9912490).

We prefer rigid and physical to flexible and unphysical

The fraction of same/opposite helicities is the same at any transverse momentum

At a certain value of x

At a certain value of x

At a certain value of x

The quarks with the same helicity as the proton's have less transverse momentum

At a certain value of x

At a certain value of x

At a certain value of x

The quarks with the same helicity as the proton's have more transverse momentum

DATA FROM DOUBLE LONGITUDINAL SPIN ASYMMETRY

Airapetian et al., arXiv:1810.07054

EXTRACTION OF TMD DEPENDENCE OF HELICITY

MAP collaboration, arXiv:2409.18078

EXTRACTION OF TMD DEPENDENCE OF HELICITY

MAP collaboration, arXiv:2409.18078

Yang, Liu, Sun, Zhao, Ma, arXiv:2409.08110, see talk by K. Yang

COMPARISON WITH LATTICE QCD

MAP collaboration, arXiv:2409.18078

Bollweg et al., arXiv:2505.18430 see talk by Wei Wang

USED DATASETS

Yang, Liu, Sun, Zhao, Ma, arXiv:2409.08110

Experiment	Process	Data points	χ^2/N
HERMES[82]	$e^{\pm}p \rightarrow e^{\pm}hX$	84 (160)	0.72
HERMES[82]	$e^{\pm}d \to e^{\pm}hX$	160 (317)	0.71
CLAS[83]	$e^-p \to e^-\pi^0 X$	9 (21)	1.43
Total		253 (498)	0.74

MAP collaboration, arXiv:2409.18078

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \to \pi^+)$	47	1.34	1.30
HERMES $(d \to \pi^-)$	47	1.10	1.08
HERMES $(d \to K^+)$	46	1.26	1.25
HERMES $(d \to K^-)$	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \to \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

USED DATASETS

Yang, Liu, Sun, Zhao, Ma, arXiv:2409.08110

MAP collaboration, arXiv:24	<u> 109.</u>	<u>. 18078</u>
-----------------------------	--------------	----------------

Experiment	Process	Data points	χ^2/N
$\overline{\mathrm{HERMES}[82]}$	$e^{\pm}p \to e^{\pm}hX$	84 (160)	0.72
$\mathrm{HERMES}[82]$	$e^{\pm}d \to e^{\pm}hX$	160 (317)	0.71
CLAS[83]	$e^-p \to e^-\pi^0 X$	9(21)	1.43
Total		253 (498)	0.74

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \to \pi^+)$	47	1.34	1.30
HERMES $(d \to \pi^-)$	47	1.10	1.08
HERMES $(d \to K^+)$	46	1.26	1.25
HERMES $(d \to K^-)$	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \to \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

More data needed!

EXPECTED DATA

Multidimensional binning needed

Data are better described by flavor-dependent TMD PDFs and FFs

- Data are better described by flavor-dependent TMD PDFs and FFs
- There are still several sources of uncertainty to be carefully studied

- Data are better described by flavor-dependent TMD PDFs and FFs
- There are still several sources of uncertainty to be carefully studied
- A first-ever TMD fit based on Neural Networks is available

- Data are better described by flavor-dependent TMD PDFs and FFs
- There are still several sources of uncertainty to be carefully studied
- A first-ever TMD fit based on Neural Networks is available
- The transverse-momentum dependence of the helicity quark distribution has been investigated

BACKUP

CHOICES OF FUNCTIONAL FORMS

MAP24: same as MAP22, but 5 different flavors for PDFs and 5 different fragmentation function

MAP22

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_T^2}{g^1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g^1 B}} + \lambda_2^2 e^{-\frac{k_T^2}{g^1 C}}\right)$$
 $g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$ $g_K(b_T^2) = -\frac{g_2^2}{2} b_T^2$

11 parameters for TMD PDF + 1 for NP evolution +9 for FF = 21 free parameters

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

COMPASS multiplicities (one of many bins)

COMPASS multiplicities (one of many bins)

Scimemi, Vladimirov, arXiv:1912.06532

Scimemi, Vladimirov, arXiv:1912.06532

Also in the SV19 study, the overall decrease is evident, but they did not report problems with the data

$$\frac{\mathsf{ENHANCEMENT}}{\mathsf{PREFACTOR}} = \frac{\frac{d\sigma}{dxdzdQ^2}}{\int \mathsf{TMD}\ d^2P_{hT}}$$

The prefactor is independent of the fitting parameters

MAP22 TENTATIVE SOLUTION

The prefactor is independent of the fitting parameters

Higher-order corrections decrease the role of the TMD region.

We need to enhance it with a prefactor.

Sudakov form factor

LL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

Sudakov form factor

LL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

$$\mathsf{NLL} \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$

Sudakov form factor

matching coeff.

LL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$

 C^0

NLL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

 C^0

Sudakov form factor

matching coeff.

$$LL \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right) \qquad \qquad C^0$$

NLL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$
 C^0

$$\mathsf{NLL'} \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right) \qquad \left(C^0 + \alpha_S C^1 \right)$$

Sudakov form factor

matching coeff.

LL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right)$$
 C^0

NLL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$
 C^0

NLL'
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right) \qquad \left(C^0 + \alpha_S C^1\right)$$

the difference between the two is formally NNLL $\alpha_S^n \ln^2 n$

$$\alpha_S^n \ln^{2n-2} \left(\frac{Q^2}{\mu_b^2} \right)$$

LOW-bt MODIFICATIONS

$$\log\left(Q^2b_T^2\right) \to \log\left(Q^2b_T^2 + 1\right)$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

LOW-bt MODIFICATIONS

$$\log\left(Q^2b_T^2\right) \to \log\left(Q^2b_T^2 + 1\right)$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

$$b_*(b_c(b_{\mathrm{T}})) = \sqrt{\frac{b_{\mathrm{T}}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\mathrm{T}}^2/b_{\mathrm{max}}^2 + b_0^2/(C_5^2 Q^2 b_{\mathrm{max}}^2)}}$$

$$b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2 Q^2 b_{\rm max}^2)}} \qquad b_{\rm min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5 Q} \sqrt{\frac{1}{1 + b_0^2/(C_5^2 Q^2 b_{\rm max}^2)}}$$

Collins et al. arXiv: 1605.00671

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i \left(C_{qi} \otimes f_1^i \right)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{NP}^q(x, b_T)$$

$$b_* \equiv rac{b_T}{\sqrt{1+b_T^2/b_{
m max}^2}}$$
 Collins, Soper, Sterman, NPB250 (85)

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{NP}^q(x, b_T)$$

$$\mu_0 = 1 \, \mathrm{GeV}$$

$$b_* \equiv rac{b_T}{\sqrt{1+b_T^2/b_{
m max}^2}}$$
 Collins, Soper, Sterman, NPB250 (85)

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{NP}^q(x, b_T)$$

$$\mu_0 = 1 \, \mathrm{GeV}$$

$$b_* \equiv rac{b_T}{\sqrt{1+b_T^2/b_{
m max}^2}}$$
 Collins, Soper, Sterman, NPB250 (85)

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$
 $b_{\text{max}} = 2e^{-\gamma_E}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{NP}^q(x, b_T)$$

$$\mu_0 = 1 \, \mathrm{GeV}$$

$$b_* \equiv rac{b_T}{\sqrt{1+b_T^2/b_{
m max}^2}}$$
 Collins, Soper, Sterman, NPB250 (85)

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$
 $b_{\text{max}} = 2e^{-\gamma_E}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

These are all choices that should be at some point checked/challenged

EFFECTS OF b* PRESCRIPTION

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$
 $b_{\text{max}} = 2e^{-\gamma_E}$
 $2e^{-\gamma_E}$

EFFECTS OF b* PRESCRIPTION

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $\bar{b}_* \equiv b_{\text{max}} \left(\frac{1 - e^{-b_T^4/b_{\text{max}}^4}}{1 - e^{-b_T^4/b_{\text{min}}^4}}\right)^{1/4}$
 $b_{\text{max}} = 2e^{-\gamma_E}$

$$b_{\text{min}} = \frac{2e^{-\gamma_E}}{Q}$$

No significant effect at high Q, but large effect at low Q (inhibits perturbative contribution)

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum