

Search for CP violation in $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi$

Jingxu Zhang, Shuangshi Fang, Xiongfei Wang Lanzhou University && IHEP

2024-04

BESIII Physics and Software meeting

https://docbes3.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=1362

Outline

Motivation

♦ Data sets

- Event selection
- Results
- ◆ Systematic uncertainty

Summary

Motivation

- Exploration for novel sources of CP violation beyond the standard model (SM) stands as an interesting endeavor in particle physics.
- □ The **colored EDM (CEDM) of the** *c* **quark** is proposed as a new source of CP violation. The effective interaction Lagrangian is defined as^[1]

$$\mathcal{L}_{\text{CEDM}} = -\frac{i}{2} d_c' \bar{\psi}_c \sigma^{\mu\nu} \gamma_5 \frac{\lambda_a}{2} \psi_c G^a_{\mu\nu},$$

■ The CEDM contributes to the static potential between *c* and \bar{c} , which causes the **mixing between CP-even and CP-odd** $c\bar{c}$ **bound states**, like ψ (3686) and J/ψ . A CP observable can be defined by CP odd operator O.

$$A_{\mathcal{O}} \equiv \frac{N_{\text{events}}(\mathcal{O} > 0) - N_{\text{events}}(\mathcal{O} < 0)}{N_{\text{events}}(\mathcal{O} > 0) + N_{\text{events}}(\mathcal{O} < 0)}.$$

Motivation

D The CP symmetry of $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$ was studied in BESII^[2].

$$\boldsymbol{CP} A(p_{\pi^+}, p_{\pi^-}, p_{J/\psi}) = A(-p_{\pi^-}, -p_{\pi^+}, -p_{J/\psi})$$

□ Three CP-odd operators correlation of the final-state particles are defined to

study CP violation in unpolarized *e*⁺ and *e*⁻ c.m. system:

This work
$$\longrightarrow$$
 $\mathcal{O}(q_{ZZ}) = (p_{\pi^+}^z - p_{\pi^-}^z) \cdot (p_{\pi^+} \times p_{\pi^-})^z$
 $\mathcal{O}(q_2) = (p_{e^+} \times p_{\pi^+}) \cdot p_{\pi^-}$
 $\mathcal{O}(q_{EE}) = p_{\pi^+}^E - p_{\pi^-}^E$

 $A_{CP}(q_{zz}) = -0.004 \pm 0.005 \pm 0.007$ $A_{CP}(q_{2}) = 0.011 \pm 0.005 \pm 0.009$ $A_{CP}(q_{EE}) = -0.007 \pm 0.005 \pm 0.010$ BESII results

- □ CP violation effect in $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi$ is predicted to be ~10⁻⁵ by SM model^[3].
- With large events of ψ (3686) collected at BESIII, the precision can be improved significantly.

[2] Fu C. D. (2005). [doctoral dissertation]. IHEP, CAS.[3] arXiv:hep-ph/0001314 2018, by J. J. Zhu.

Motivation

- The expectation values of the CP-odd operator is linear in d[']_c, in the assumption of CEDM of charm quark^[1]. It shows:
 - $\langle O \rangle = \frac{\mathcal{A}}{\Gamma(\psi' \to J/\psi\pi\pi)} \{ \mathcal{K}_{M1CEDM1} \mathcal{I}_{E1E1-M1CEDM1} + \mathcal{K}_{E1CEDM2} \mathcal{I}_{E1E1-E1CEDM2} \\ + C/\mathcal{A}[\mathcal{K}_{E1M1} \mathcal{I}_{E1E1-E1M1} + \mathcal{K}_{M1CEMD1} \mathcal{I}_{E1E1-M1CEDM1} + \mathcal{K}_{E1CEDM2} \mathcal{I}_{E1E1-E1CEDM2}] \} d'_{c} \cdot m_{c},$

Here, \mathcal{A}, \mathcal{C} are the constant parameters, the $\mathcal{K}s$ are the hadronization factor coefficients at softpion approach, the $\mathcal{I}s$ are the phase-space integrations of the interference terms.

□ We can then get the correlation with model dependent^[1]:

- $< \mathcal{O} >= 0.00933 * \boldsymbol{d}_{\boldsymbol{c}}' \cdot m_{\boldsymbol{c}}$ in SM,
- $< \mathcal{O} >= 0.00693 * d'_c \cdot m_c$ in Cornell model.

The m_c is the mass of charm quark. It can help to extract the strength of CEDM contribution.

Decay amplitude for $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$

I. Chiral perturbation theory (ChPT) ^[5]

$$\begin{aligned} \mathcal{A}(\Psi' \to \Psi \pi^{+} \pi^{-}) &= -\frac{4}{F_{0}^{2}} \left\{ \begin{bmatrix} g \\ 2 (m_{\pi\pi}^{2} - 2M_{\pi}^{2}) + g_{1}E_{\pi^{+}}E_{\pi^{-}} \end{bmatrix} \epsilon_{\Psi}^{*} \cdot \epsilon_{\Psi'} \\ &+ g_{2} \left[p_{\pi^{+}\mu}p_{\pi^{-}\nu} + p_{\pi^{+}\nu}p_{\pi^{-}\mu} \right] \epsilon_{\Psi}^{*}^{\mu} \epsilon_{\Psi'}^{\nu} \right\} \\ \end{aligned}$$

$$\frac{\pi^{+}}_{V'} \frac{\pi^{-}}{V'} + \frac{\pi^{+}}_{V'} \frac{\pi^{-}}{V'} + \frac{\pi^{+}}_{V'} \frac{\pi^{-}}{V'} \frac{\pi^{-}}$$

 $Amp = A^{tree} + A^{1-loop}$

II. The chiral unitary approach (CHUA) is used to study the dipion transitions. (Final states interaction, FSI)

The $\pi\pi$ S-wave scattering amplitude is: $T(q^2) = V(q^2) [1 - G(q^2)V(q^2)]^{-1}$

> Where, $q^2 = m_{\pi\pi}^2$ > Where, $V = \frac{1}{F_{\pi}^2} \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix}$ • $V_{11} = M_{\pi^0}^2/2$ • $V_{12} = \frac{q^2 - M_{\pi^0}^2}{\sqrt{2}} = V_{21}$ • $V_{22} = [q^2 + 4(M_{\pi^+}^2 - M_{\pi^0}^2)]/2$ • F_{π} is pion decay constant

> Where,
$$G = diag(G_{00}, G_{+-})$$

 $G_{00(+-)} = -\frac{1}{16\pi^2} \left[\gamma + \sigma_{0(+)} log\left(\frac{\sigma_{0(+)} + 1}{\sigma_{0(+)} - 1}\right) \right]$

- γ is a subtraction parameter to regularize the loop
- μ is the mass of ρ meson

•
$$\sigma_{0(+)} = \sqrt{1 - \frac{4M_{\pi^{0(+)}}}{q^2}}$$

The 1-loop amplitude in the CHUA is:^[6]

$$A^{1-loop} = A^{tree} [1 + G_{00}T_{12} + \sqrt{2}G_{+-}T_{22}]$$

[4] Nucl.Phys.A761:269-282,2005 by F.K. GUO
[5] Z.Phys. C73 (1997) 541-546 by Mannel
[6] Eur. Phys. J. C (2013) 73:2284 by X.H. LIU

Data sets

BLIND ANALYSIS

BOSS 7.0.9

- **D**ata sample:
 - Semi-Data of 2009, 2012 and 2021
- **MC** sample:
 - ◆ All years Inclusive MC

•	
	1
$\mathbf{'}$	

Nature volume 526, pages187–189 (2015)

Decay mode	Generator	NR of events
$\psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow e^+e^-$	PHSP	40 Million
	DIY, PHOTOS, VLL	42.8 Million
$\psi(3686) \rightarrow \pi^+ \pi^- J/\psi, J/\psi \rightarrow \mu^+ \mu^-$	PHSP	40 Million
	DIY, PHOTOS, VLL	42.8 Million

The exclusive MC is corrected by helix parameters.

Event selection

Charged tracks

- $| cos \theta | < 0.93;$
- $\blacksquare |R_{xy}| < 1.0 \text{ cm \&\&} |R_z| < 10.0 \text{ cm};$
- $\blacksquare \quad N_{positive} = 2 \&\& N_{negative} = 2.$

D PID

- Use momentum to identify pions and leptons;
- $p_{\pi} < 1.0 \,\text{GeV}/c, p_l > 1.0 \,\text{GeV}/c;$
- $\blacksquare \quad N_{\pi^-} = 1\&\& N_{\pi^+} = 1\&\& N_{l^+} = 1\&\& N_{l^-} = 1.$

\Box *e*, μ identification

- Deposited energy of EMC
- Electron: $E_{emc}^{e^+} > 1.0 \text{ GeV } \&\& E_{emc}^{e^-} > 1.0 \text{ GeV};$
- Muon: $E_{emc}^{\mu^+} < 0.45 \text{ GeV} \&\& E_{emc}^{\mu^-} < 0.45 \text{ GeV}.$

Event selection

Vertex fit

- All final states require to be from same vertex;
- Vertex fit: Successful;

□ 4C kinematic Fit

- Fit to pi+ pi- l+ l-;
- $\chi^2_{4C} < 100;$

□ Further selection

- Select J/ ψ : $|m_{l^+l^-} 3.097| < 0.01 \text{ GeV}/c^2$;
- $| \cos \theta_{\pi l} | > 0.95 \& m_{\pi \pi} < 0.32 \text{ GeV}/c^2.$

Data and MC

10

Tracking efficiency correction

To improve the agreement between data and MC samples, the pion tracking efficiency are corrected for the CP operators. The $\pi^+\pi^-$ efficiency is quoted from BAM-00504, as the control sample is $J/\psi \rightarrow \pi^+\pi^-\pi^0$. The definition of correction factor is:

$$R(pt, cos\theta) = \frac{\epsilon_{data}^{\pi^+} \times \epsilon_{data}^{\pi^-}}{\epsilon_{MC}^{\pi^+} \times \epsilon_{MC}^{\pi^-}}$$

MC Efficiency

□ Efficiency

Source	$J/\psi ightarrow e^+e^-$	$J/\psi ightarrow \mu^+\mu^-$
Total events	4.28E+07	4.28E+07
Initial selection	40.37%	48.41%
EMC energy	37.38%	48.28%
$\chi^2_{4C} < 100$	30.04%	43.73%
J/ψ mass window	28.95%	42.07%
Cut Range	25.59%	37.19%

$$\mathrm{Err} = \sqrt{\frac{\epsilon * (1 - \epsilon)}{N_{tot}}} = 0.01\%$$

Background study

- 0.02% (e^+e^-) and 0.3% ($\mu^+\mu^-$) background level based on inclusive MC.
- 467 (e^+e^-) and 449 ($\mu^+\mu^-$) events survived of 3.65 GeV data, corresponding to 410 pb-1.

$$f = \frac{\mathcal{L}_{\psi(3686)}}{\mathcal{L}_{3650}} \times \frac{s_{3650}}{s_{\psi(3686)}},$$

Table 2: Topology analysis from inclusive MC for e^+e^- decay channel.

Table 3: Topology analysis from inclusive MC for $\mu^+\mu^-$ decay channel.

	Deserve she in				
rowino	Decay chain	nEtr	rowNo	Decay chain	nEtr
1	$\psi' \to \pi^+ \pi^- J/\psi, J/\psi \to e^+ e^-$	14575864	1	$\psi' \to \pi^+ \pi^- J/\psi, J/\psi \to \mu^+ \mu^-$	21156043
2	$\psi' ightarrow \eta J/\psi, \eta ightarrow \pi^+\pi^-, J/\psi ightarrow e^+e^-$	338	2	$\psi' ightarrow \pi^+ \pi^- J/\psi, J/\psi ightarrow e^+ e^-$	39309
3	$\psi' ightarrow \pi^+ \pi^- J/\psi, J/\psi ightarrow \pi^+ \pi^-$	74	3	$\eta \mu' \to \pi^+ \pi^- I/\eta \mu J/\eta \to \pi^+ \pi^-$	21791
4	$\psi^\prime ightarrow \pi^0 \pi^0 J/\psi, J/\psi ightarrow e^+ e^-$	60	2 4	$\psi' \rightarrow \pi^+ \pi^- I/\mu I/\mu \rightarrow f_0(2100) \psi f_0(2100) \rightarrow \pi^+ \pi^-$	844
5	$\psi' ightarrow e^+ e^-$	50		$\psi' \to \pi \pi \pi 5/\psi, 5/\psi' \to f_0(2100), f_0(2100) \to \pi \pi$	450
6	$\psi' ightarrow \pi^+ \pi^- J/\psi, J/\psi ightarrow \mu^+ \mu^-$	45		$\psi \to \eta j/\psi, \eta \to \pi \pi , j/\psi \to \mu \mu$	

Extract parameters in DIY model

$$Amp = A^{tree} + A^{1-loop}$$

Likelihood Function:

$$\mathcal{L} = \prod_{i=1}^{N} \frac{\mathcal{W}(\xi_i; g0, g1, g2, \gamma) \epsilon(\xi_i)}{\frac{1}{N_{MC}} \sum_{j=1}^{N_{MC}} \mathcal{W}(\xi_j; g0, g1, g2, \gamma) \epsilon d\xi_j}$$

Minimum Function:

$$\mathcal{S} = -ln\mathcal{L}_{data}$$

Parameters	Values
g0	0.2897 ± 0.0002
g1	-0.1085 ± 0.0001
g2	0
γ	-2.934 ± 0.004

A_{CP} measurements

$$q_{zz} = (p_z^{\pi^+} - p_z^{\pi^-})(p_x^{\pi^+} p_y^{\pi^-} - p_x^{\pi^-} p_y^{\pi^+})$$

- To extract the true nature of physics, it is necessary to do the efficiency correction to the observed data samples (N^{obs}).
- It helps to remove the effects on detector resolution and reconstructed processes.
- The binned MC efficiency (εⁱ) is used to correct the observed data samples to the true physics level.
- The true events of data (*N*_{data}) is:

$$N_{data}^{i} = \frac{N_{obs}^{i}}{\epsilon^{i}}$$

• The binned operator is summed together into two parts, N_{data}^+ with $\mathcal{O} > 0$ and N_{data}^- with $\mathcal{O} < 0$. Then, the A_{CP} observable is defined as:

$$A_{CP} = \frac{N_{data}^{+} - N_{data}^{-}}{N_{data}^{+} + N_{data}^{-}}$$

A_{CP} measurements – Operator distributions

Table 6: The results for number of events N_{obs} , detection efficiency ϵ and A_{CP} values of q_{zz} in e^+e^- and $\mu^+\mu^-$ channels.

Channel	N_{obs}^{-}	N_{obs}^+	ϵ (%)	$A_{CP} (\times 10^{-4})$
e^+e^-	$1,060,050 \pm 1030$	$1,060,660 \pm 1030$	25.59 ± 0.01	8.2 ± 7.2
$\mu^+\mu^-$	$1,590,560 \pm 1261$	$1,589,190 \pm 1261$	37.19 ± 0.01	-4.4 ± 5.8

Systematic uncertainty I

Tracking efficiency

Quote *ee* efficiency from BAM – 00543, $\mu\mu$ efficiency is from the same efficiency as $\pi\pi$. By defining the reweight factor, *reweight* = $\frac{\epsilon_{data}}{\epsilon_{MC}}$, the corrected MC samples are used to give the results.

The difference between nominal results and corrected results is taken as systematic uncertainty.

For $\pi\pi$ tracking, the difference between nominal results and not-corrected results is taken as systematic uncertainty.

Table 8:	Systematic	uncert	ainty	of A_{CI}	p from	track	ing ef	ficienci	es.
	$\times 10^{-4}$	J/ψ	$\nu \to e^{-1}$	$^{+}e^{-}$	J/ψ		$^{+}\mu^{-}$	-	
	Tracking	<i>e</i> ⁻	e^+	π	μ^{-}	μ^+	π	-	
	ACP	0.1	0.3	0.1	0.0	0.0	0.2		

T

Systematic uncertainty II

♦ Kinematic fit

The difference of results between with and without helix parameters correction is taken as systematic uncertainty.

Table 9: Systematic uncertainty of A_{CP} from 4C kinematic fit.

$\times 10^{-4}$	Nominal result	No helix correction	Difference
$J/\psi ightarrow e^+e^-$	8.2	8.3	0.1
$J/\psi ightarrow \mu^+\mu^-$	-4.4	-4.6	0.2

Systematic uncertainty III

\blacklozenge Mass window of $m_{l^+l^-}$

By changing the mass window range of ± 1 MeV (nominal 10 MeV), the maximum difference is taken as the systematic uncertainty.

• Cut range for q_{zz}

By changing the cut range of ± 0.0002 , the maximum difference is taken as the systematic uncertainty.

	υγφ			
$\times 10^{-4}$	$J/\psi \rightarrow$	e^+e^-	$J/\psi \rightarrow J$	$\mu^+\mu^-$
Requirement	Cut $m_{e^+e^-}$	Cut q_{zz}	Cut $m_{\mu^+\mu^-}$	Cut q_{zz}
A_{CP}	0.9	1.0	0.6	0.4

Table 11: Systematic uncertainty of A_{CP} from mass window of $m_{J/\psi}$ and cut of q_{zz} distributions.

Systematic uncertainty IV

$$A_{CP} = \frac{(N_{Data}^{+} - N_{Bkg}^{+}) - (N_{Data}^{-} - N_{Bkg}^{-})}{(N_{Data}^{+} - N_{Bkg}^{+}) + (N_{Data}^{-} - N_{Bkg}^{+})}.$$

Background

When considering the background events, the measurement for the A_{CP} should be modified. The difference of results between with and without considering the backgrounds is regarded as the systematic uncertainty due to backgrounds. The **continuum backgrounds** are taken into account.

$\times 10^{-4}$	Nominal result	N_{QED}^{-}	N_{QED}^+	QED result	Difference
$J/\psi ightarrow e^+e^-$	8.2	765	828	8.1	0.1
$J/\psi \to \mu^+ \mu^-$	-4.4	442	473	-4.4	0.0

Table 10: Systematic uncertainty of A_{CP} from continuum backgrounds.

Summary of systematic uncertainty

Table 7: The systematic uncertainties of the A_{CP} measurements in decay channels $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi$, $J/\psi \rightarrow e^+ e^-$ and $J/\psi \rightarrow \mu^+ \mu^-$. The absolute errors are at level of $\times 10^{-4}$, and relative errors are in parentheses.

Source	$J/\psi ightarrow e^+e^-$	$J/\psi ightarrow \mu^+\mu^-$
Tracking for l^-	0.1 (1.6%)	0.0 (1.1%)
Tracking for l^+	0.3 (3.1%)	0.0 (0.9%)
Tracking for π	0.1 (1.0%)	0.2 (3.5%)
Mass window for $m_{l^+l^-}$	0.9 (10.9%)	0.6 (14.0%)
Cut range for q_{zz}	1.0 (11.8%)	0.4 (9.4%)
Kinematic fit	0.1 (1.1%)	0.2 (5.0%)
Background	0.1 (1.1%)	0.0 (1.1%)
Summary	1.4 (16.5%)	0.8 (18.9%)

Summary

Table 12: The results of A_{CP} measurement. The first uncertainty is statistical and the second systematic.

	$J/\psi \rightarrow e^+e^- (\times 10^{-4})$	$J/\psi \to \mu^+ \mu^- (\times 10^{-4})$
A_{CP}	$8.2 \pm 7.2 \pm 1.4$	$-4.4 \pm 5.8 \pm 0.8$

- We study the measurements of A_{CP} in $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$ process using semi-data of $\psi(3686)$ samples, according to decay modes $J/\psi \rightarrow e^+e^-$ and $J/\psi \rightarrow \mu^+\mu^-$.
- **D** By combining two channels, the $A_{CP}^{q_{zz}} = (0.6 \pm 4.5) \times 10^{-4}$, which indicates CP conservation.
- □ The strength of CEDM is $d'_c = (0.3 \pm 2.3) \times 10^{-16} e \cdot cm$ in SM, $d'_c = (0.3 \pm 3.1) \times 10^{-16} e \cdot cm$ in Cornell model.
- □ *The memo has passed by the new physics group review.*

Thank you ~

Back up

Resolution (Rec - Truth)

	qzz	q2	qEE
Resolution	10^-7	10^-5	10^-4
Range	0.01	0.05	0.2

CP-odd operators:

• $q_{zz} = (p_z^{\pi^+} - p_z^{\pi^-})(p_x^{\pi^+} p_y^{\pi^-} - p_x^{\pi^-} p_y^{\pi^+})$

•
$$q_2 = p_x^{\pi^+} p_y^{\pi^-} - p_x^{\pi^-} p_y^{\pi}$$

• $a = E^{\pi^+} E^{\pi^-}$

•
$$q_{EE} = E^{\pi^+} - E^{\pi}$$

$cos\theta$ v.s. $pt - e^+e^-$

Determination of cut range for qzz, q2, qEE

Cut range [-0.011, 0.011] both in ee and mumu

$$Slope(B) = \frac{A+C}{2}$$

Helix tracking parameters

	· · · ·					
	ϕ_0		К		${ m tg}\lambda$	
	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$
π^+	-0.042	1.145	0.146	1.118	-0.119	1.055
π^{-}	0.025	1.155	-0.134	1.156	-0.124	1.099
e^+	-0.079	1.236	0.308	1.001	-0.152	1.045
<i>e</i> ⁻	0.067	1.235	-0.334	1.036	-0.130	1.039

Table 4: Correction factors extracted from pull distributions in the process $e^+e^- \rightarrow \pi^+\pi^-e^+e^ (\sqrt{s} = 3.686 GeV)$

Table 5: Correction	factors extracted f	rom pull distrib	outions in the pro-	ocess $e^+e^- \rightarrow$	$\pi^+\pi^-\mu^+\mu^-$
$(\sqrt{s} = 3.686 GeV)$					

	ϕ_0		К		tgλ	
	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$
π^+	-0.047	1.246	0.144	1.207	0.124	1.177
π^{-}	-0.037	1.257	-0.118	1.195	-0.153	1.152
μ^+	-0.088	1.301	0.249	1.114	-0.199	1.133
μ^{-}	0.056	1.306	-0.267	1.132	-0.169	1.091

Helix_Correction.pdf (ihep.ac.cn)

Control sample: $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ Data set: Boss version:

2012 year ψ' (305M) 664p03

Continuum background in $cos\theta_{l\pi}$ v.s. $m_{\pi\pi}$

Data@3650 *e*⁺*e*⁻

