Search for BNV process $J/\psi \rightarrow pe^-(\bar{p}e^+)$ via $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$,

Yu-Fei Kong, <u>Guo-Rong Che</u>, Chen Chen, Ming-Gang Zhao Nankai University Ce Zhang, Da-Yong Wang Peking University

BESIII Physics and Software meeting

Outline

- 1. Motivation
- 2. Data Samples, Monte Carlo simulation and software
- 3. Event Selection
- 4. Cut Flow
- 5. Systematic Uncertainty
- 6. Upper Limit of Signal
- 7. IO check results
- 8. Summery

Motivation

- If baryon number is conserved, in the process of baryon generation and annihilation of baryon-antibaryon pairs, the baryon number should always be 0, which means there should not be more matter than antimatter. But it is observed to depart from the fact. So, Sakharov put forward three rules:
 - (1) Baryon number violating (BNV).
 - (2) C violation and CP violation.
 - (3) Out of thermal equilibrium.
- As many theories have suggested, even a small amount of BNV processes can cause great influence on the universe and its evolution. Searching for BNV processes can help to learn the origin of matter and expend the standard model.
- $J/\psi \rightarrow pe^{-}/\overline{p}e^{+}$ is a baryon number violating process with $\Delta(B-L) = 0$.

Data Samples

- Data samples: NPG semi-blind data
- Inclusive MC: 2748M ψ (2S) MC samples (2009, 2012, 2021)
- BOSS version: 7.0.9
- Generator:

Decay psi(2S) 1.0 J/psi pi+ pi- JPIPI; Enddecay						
Decay J/psi 1.0 anti-p- e+ Enddecay	PHSP;					
End						

Decay psi(2S) 1.0 J/psi pi+ pi- Enddecay	JPIPI;
Decay J/psi 1.0 p+ e- Enddecay	PHSP;
End	

Event Selection

- 1. Total tracks ≥ 4
- 2. 4 good charged tracks, Total charge = 0
 - $|V_z| < 10 \text{ cm}$ $V_r < 1 \text{ cm}$ $|\cos \theta| < 0.93$
- 3. PID (Combine dE/dx and TOF)

pion: $|p_{\pi}| < 0.45 \text{ GeV}/c^2$

electron: $\frac{CL_e}{CL_e + CL_{\pi} + CL_K} > 0.8, CL_e > 0.001, 0.8 < E/p$ proton: $CL_p > CL_K, CL_p > CL_{\pi}, CL_p > CL_e, CL_p > 0.001$

• 4. 4c kinematic fit:
$$\chi^2(\pi^+\pi^-pe^-) < \chi^2(\pi^+\pi^-e^+e^-),$$

 $\chi^2(\pi^+\pi^-pe^-) < \chi^2(\pi^+\pi^-\pi^+\pi^-),$
 $\chi^2(\pi^+\pi^-pe^-) < \chi^2(\pi^+\pi^-\mu^+\mu^-),$
 $\chi^2(\pi^+\pi^-pe^-) < \chi^2(\pi^+\pi^-K^+K^-),$
 $\chi^2(\pi^+\pi^-pe^-) < \chi^2(\pi^+\pi^-p\bar{p});$

Event Selection

• 5. $\chi^2(\pi^+\pi^-\bar{p}e^+) \le 10$ (determined by Punzi significance method)

 $[\mu - 3\sigma, \mu + 3\sigma] = [3.091, 3.102]$

 μ = 3.097 GeV

 σ = 0.002GeV

$$\mu$$
 = 3.097 GeV
 σ = 0.002 GeV
[μ -3 σ , μ +3 σ] = [3.091, 3.102]

Signal shape model: **Double Gaussian function** Background shape model: **second-order Chebychev function**

2D distribution

signal MC

inclusive MC

signal region =
$$[\mu -3\sigma, \mu +3\sigma]$$

x-axis region = $[\mu -10\sigma, \mu +10\sigma]$
y-axis region = $[\mu -10\sigma, \mu +10\sigma]$

Cut flow

	<pre>pe⁻efficiency (%)</pre>	$\overline{p}e^+$ efficiency (%)	inclusiveMC Absolute efficiency (%)
Total number	100000 (100, 100)	100000 (100, 100)	2748000000 (100, 100)
Charged tracks >= 4	77603 (77.60, 77.60)	78602 (78.60, 78.60)	1918480114 (69.81, 69.81)
Good charged tracks = 4	63859 (63.86, 82.29)	63543 (63.54, 80.84)	670439126 (24.40, 34.95)
After particle ID	52828 (52.83, 82.73)	51658 (51.66, 81.30)	2623404 (0.10, 0.39)
After 4c kinematic fit	42102 (42.10, 79.70)	40422 (40.42, 78.25)	89949 (3.27E-03, 3.43)
χ^2 min	41803 (41.80, 99.29)	40132 (40.13, 99.28)	9994 (3.64e-04, 11.11)
χ ² <10	22011 (22.01, 52.65)	21051 (21.1, 52.45)	8 (2.91e-07, 0.08)
signal region	20431 (20.43, 98.71)	19539 (19.53, 98.81)	3 (1.09e-07, 37.5)

Background Study

 After applying all cuts to inclusive MC (2748M from 2009, 2012 and 2021), there are 3 events left in the signal region (red box).

rowNo	decay tree	decay final state	iDcyTr	nEtr	nCEtr
1	$\psi' \to \pi^+ \pi^- J/\psi, J/\psi \to e^+ e^- \gamma^f \gamma^f$	$e^+e^-\pi^+\pi^-\gamma^f\gamma^f$	0	2	2
2	$\psi' \to \pi^+ \pi^- J/\psi, J/\psi \to e^+ e^- \gamma^f$	$e^+e^-\pi^+\pi^-\gamma^f$	1	1	3

Continue background

At 3.650GeV and 3.680GeV, 0 events survived from data sample.

Events selection	3650	3680
Total events	1995337496	1205457414
nCharged ≥ 4	17599575	16962236
nGood Charge Tracks $=4$	2629392	4228460
After particle ID	35873	37079
Kinematic fit	1006	810
$\chi^2 \min$	137	106
$\chi^2 < 10$	9	2
Signal window cut	0	0

Systematic Uncertainty

• Total Number of $\psi(3686)$

We quote the BESIII measurement of $N_{\psi(3686)} = (2704 \pm 101) \times 10^6$, where the uncertainty is the systematic and the statistical one is negligible. Here we take 0.6% as the systematic uncertainty[1].

• Br ($\psi(3686) \rightarrow \pi^+\pi^- J/\psi$)

The input $Br(\psi(3686) \rightarrow \pi^+\pi^- J/\psi) = (34.68 \pm 0.02 \pm 0.45)\%$ is cited from Ref[2]. The uncertainty of the input Br should be considered in the systematic errors, which is 1.3%.

[1] C.liu et al. (BESIII Collaboration), Report on Collaboration Meeting in Summer 2022
[2] M.Ablikim er al., Phys. Rev. D 88(2013) 3, 032007
[3] M.Ablikim er al., Phys. Rev. D 99 (2019) , 112010

Systematic Uncertainty

• Tracking Efficiency and Particle Identification Efficiency

The uncertainties on the tracking efficiency and particle identificancation efficiency are estimated with control sample $J/\psi \rightarrow \pi^+\pi^-\pi^0$, $J/\psi \rightarrow e^+e^-\gamma_{FSR}$, $J/\psi \rightarrow \pi^+\pi^-p \,\bar{p}$ and $J/\psi \rightarrow \pi^0 K^+ K^-$ [2].

	MDC tracking	PID
pion	0.3%	1.0%
electron	0.7%	1.1%
proton	1.0%	2.8%

[1] C.liu et al. (BESIII Collaboration), Report on Collaboration Meeting in Summer 2022
[2] M.Ablikim et al., Phys.Rev. D 105, 032006, (2022).
[3] M.Ablikim er al., Phys.Rev. D 99 (2019), 112010

Systematic Uncertainty

• For $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow pe$, the final state is $\pi^+\pi^- pe$. The systematic error introduced by the 4C kinematic fit can be studied by the Helix correction .

	pe ⁻		$\bar{p}e^+$	
Requirement	before	after	before	after
Selection Efficiency	22.01%	19.36%	21.1%	17.11%
Error from 4C Kinematic Fit	12.04%		18.91%	

Uncertainty in Mass Window (pe)

Signal window	Detection Efficiency(%)	
	pe ⁻	$\bar{p}e^+$
$\mu - 2.7\sigma, \mu + 2, 7\sigma$	20.34	19.46
$\mu - 2.8\sigma, \mu + 2.8\sigma$	20.38	19.49
$\mu - 2.9\sigma, \mu + 2.9\sigma$	20.40	19.51
$\mu - 3.1\sigma, \mu + 3.1\sigma$	20.45	19.56
$\mu - 3.2\sigma, \mu + 3.2\sigma$	20.48	19.58
$\mu - 3.3\sigma, \mu + 3.3\sigma$	20.50	19.60
Diffrence	0.4%	0.3%

Summary of Systematic uncertainties

Source	pe ⁻	$\bar{p}e^+$
$N_{J/\psi}$	0.6	0.6
${\rm Br}\big(\psi(3686)\to\pi^+\pi^-J/\psi\big)$	1.3	1.3
MDC tracking	2.3	2.3
PID	5.9	5.9
4C kinematic fit	12.04	18.91
Signal window	0.3	0.4
Total	13.68	20.0

[1] C.liu et al. (BESIII Collaboration), Report on Collaboration Meeting in Summer 2022
[2] M.Ablikim er al., Phys. Rev. D 88(2013) 3, 032007
[3] M.Ablikim er al., Phys. Rev. D 105 (2022), 032006
[4]https://docbes3.ihep.ac.cn/DocDB/0009/000988/020/diff_SP2.pdf

 N^{up} 90% C.L. is estimated by using the TROLKE program, where the number of the signal and background events are assumed to follow a Poisson distribution, the detection efficiency is assumed to follow a Gaussian distribution.

The Upper Limit $N_{J/\psi \rightarrow pe}^{up}$ with semi-blind data

 In semi-blind analysis, the Nsig is obtained from semi-blind data, the Nbkg is estimated from inclusive MC sample whose size if 10 times of semi-blind data.

IO check results

The results show the output values of the fractions are consistent with those of input values.

Figure 7: The pull distributions of $J/\psi \to pe^-$

Figure 9: The pull distributions of $J/\psi \to \bar{p} e^+$

Summery

- Full blind analysis: based on inclusive MC of 2748M J/ψ events, 1/2 events left in the $J/\psi \rightarrow pe/\bar{p}e^+$ signal region, leading to the upper limit at 90% C.L. $B(J/\psi \rightarrow pe^-/\bar{p}e^+) < 1.92 \times 10^{-8}/3.06 \times 10^{-8}$.
- Semi blind analysis: the signal is obtained from data while background is estimated from inclusive MC sample, the upper limit at 90% C.L. is set to be $B(J/\psi \rightarrow pe^{-}/\bar{p}e^{+}) < 1.03 \times 10^{-7}/2.07 \times 10^{-7}$.

Helix correction parameters of electron and muon

the 2012 psi(2S)

	φ(ϕ_0		К		tgλ	
	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	
π^+	-0.042	1.145	0.146	1.118	-0.119	1.055	
π^{-}	0.025	1.155	-0.134	1.156	-0.124	1.099	
e^+	-0.079	1.236	0.308	1.001	-0.152	1.045	
e ⁻	0.067	1.235	-0.334	1.036	-0.130	1.039	

Table 9: Correction factors from process of a^+a^- > $\pi^+\pi^-a^+a^-$ ($\sqrt{a} - 2.696C aV$)

Table 9: Correction factors from process of $e^+e^- \rightarrow \pi^+\pi^-\mu^+\mu^-$ ($\sqrt{s} = 3.686 GeV$).

	ϕ_0		K		tgλ	
	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$	$m^{data} - m^{MC}$	$\sigma^{data}/\sigma^{MC}$
π^+	-0.047	1.246	0.144	1.207	0.124	1.177
π^{-}	-0.037	1.257	-0.118	1.195	-0.153	1.152
μ^+	-0.088	1.301	0.249	1.114	-0.199	1.133
μ^{-}	0.056	1.306	-0.267	1.132	-0.169	1.091

https://docbes3.ihep.ac.cn/charmoniumgroup/images/c/c4/Helix_Correction.pdf

Helix correction parameters of pion

BOSS 709, including 2009, 2012,2021 psi(2S)

2000	φ	0	κ		tgλ	
2009	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$
π^+	0.087	1.164	0.186	1.171	0.470	1.169
π-	0.100	1.165	-0.036	1.207	0.456	1.166
2012	φ	0	κ		tgλ	
2012	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$
π^+	0.082	1.211	0.284	1.164	-0.0537	1.180
π-	0.105	1.206	-0.122	1.199	-0.064	1.119
2021	φ	0	ĸ		tg	λ
2021	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$
π^+	0.094	1.167	0.206	1.169	0.109	1.185
π^{-}	0.102	1.171	-0.060	1.178	0.097	1.165

https://docbes3.ihep.ac.cn/charmoniumgroup/images/e/ec/Pi_helix.pdf

Helix correction parameters of kaon

BOSS 709, including 2009, 2012,2021 psi(2S)

09	Parameter	φ ₀		к		tgλ	
		m _{data} – m _{MC}	$\sigma_{data}/\sigma_{(MC)}$	m _{data} – m _{MC}	$\sigma_{data}/\sigma_{(MC)}$	m _{data} – m _{MC}	$\sigma_{data}/\sigma_{(MC)}$
NV 1	K+	0.01	1.17	0.12	1.18	0.53	1.14
web page	K-	0.06	1.18	-0.07	1.18	0.53	1.12
0	K+	0.10	1.10	0.13	1.17	0.48	1.18
Our result	K-	0.09	1.13	0.06	1.18	0.47	1.26
10	Parameter	φ ₀		к		tgλ	
		m _{data} – m _{MC}	$\sigma_{\rm data}/\sigma_{\rm (MC)}$	m _{data} – m _{MC}	$\sigma_{\rm data}/\sigma_{\rm (MC)}$	m _{data} – m _{MC}	$\sigma_{\rm data}/\sigma_{\rm (MC)}$
W. I	K ⁺	-0.05	1.20	0.31	1.21	-0.07	1.14
web page	K-	0.05	1.20	-0.30	1.21	-0.06	1.14
	K ⁺	0.08	1.23	0.31	1.19	-0.03	1.08
Our result	K-	0.12	1.18	-0.14	1.18	-0.04	1.07
01	Parameter	φ₀		к		tgλ	
21		m _{data} – m _{MC}	$\sigma_{\rm data}/\sigma_{\rm (MC)}$	m _{data} – m _{MC}	$\sigma_{data}/\sigma_{(MC)}$	m _{data} – m _{MC}	$\sigma_{\rm data}/\sigma_{\rm (MC)}$
0	K ⁺	0.11	1.15	0.17	1.17	0.23	1.14
Our result	К-	0.11	1.15	0.003	1.16	0.21	1.15

https://docbes3.ihep.ac.cn/charmoniumgroup/images/9/92/K_helix.pdf

Helix correction parameters of protron

BOSS 709, including 2009, 2012,2021 psi(2S)

2009	ϕ_0		ŀ	C	${ m tg}\lambda$	
	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$
р	0.063	1.051	0.154	1.076	0.987	1.001
p	0.204	1.059	0.007	1.092	0.973	1.010

2012	ϕ_0		ŀ	C	${ m tg}\lambda$	
	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$
р	0.025	1.056	0.342	1.098	0.061	1.002
p	0.193	1.055	-0.095	1.107	0.025	1.001

2021	ϕ_0		ŀ	c	tgλ	
	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$	$m_{data} - m_{MC}$	$\sigma_{data}/\sigma_{MC}$
р	0.123	1.049	0.133	1.077	0.212	1.020
p	0.123	1.053	0.072	1.076	0.219	1.025

https://docbes3.ihep.ac.cn/charmoniumgroup/images/7/79/Ppbar_helix.pdf

