

Simulation of the occupancy of TPC detector at Tera-Z

Huirong Qi

Xin She, Yue Chang, Zhi Deng, Liwen Yu, Jian Zhang, Guang Zhao, Lingwu Wu, Gang Li and LCTPC international collaboration

> Institute of High Energy Physics, CAS April 17, 2024

- Motivation
- Voxel Occupancy using Pixelated Readout
- Rates and operation gas for TPC
- Summary

• Motivation

CEPC TPC parameters in TDR

TPC parameters updated in CEPC TDR:

- rMin:0.30m (CDR) \rightarrow **0.60m (TDR**)
- rMax:1.80m (CDR) \rightarrow 1.80m (TDR)
- maxDriftLen:2.35m (CDR) \rightarrow 2.90m (TDR), cos θ ~0.98

CEPC TPC layout in CDR(left) & CEPC TPC layout in TDR(right)

Hit density at the inner radius at Z pole 2T

- Hit density at the full simulation with the beam background $(3T \rightarrow 2T)$
- At 2E36 (Tera-Z) with Physics event only, even bunch distribution(cite#2).
 - Pixelated readout much **LOWER** inner most occupancy (even 0.6m inner radius)
 - Pixelated readout can easily handle a high hits rate at Z pole. (cite#3/4)
 - The data at the inner radius @40M BX Z pole@1 Module ~0.05Gbps(Maximum).

Huirong Qi

Cite#4 GridPix detectors

• Performance studies of the pixelated readout TPC for CEPC TDR

- Material budget at endcape/barrel
- Occupancy and hit density (with Beamstruggle)
 Improved dE/dx+dN/dx for PID

• Ion backflow suppression

- Reasonable channels and power consumption
- Running at 2 Tesla
- Beamstrahlung and distortion
- **Prototype validation**

Critical key issues

• Voxel Occupancy using Pixelated Readout

Pixelated readout TPC technology for CEPC TDR

- The pixelated readout TPC's occupancy is the **number of pixels with at least one active time sample** during the bunch train, divided by the total number of pixels of TPC.
 - On-going of the simulation

Voxel occupancy in TPC

- The voxel occupancy is the number of 3D readout cells (voxels) divided by all voxels in the TPC.
- A voxel has the size of pixel in the xy direction and the length of one time sample multiplied by the drift velocity in z direction.
 - Due to the shaping of the electronics, a single pulse occupies several voxels, even if the signal is just on one readout channel.
 - Typical drift velocity of **80mm/µs**
 - Readout frequency of **40 MHz** the voxel size in z is about 2 mm.

Beam background @ Higgs 3T

- Primary ions per bunch crossing in TPC
 - Edep: 10.21 GeV in total(10000BX)
 - Number of primary ions:
 - Edep/effective ionization potential of Ar [26eV] ~39.26k ions/BX
 - Primary ions in TPC at any time ~ 1.5×10^{10}
 - Average primary ion density ~0.05nC/m³

Hits map (left) & Ion density(right) at x-y plane

表 4.1: Summary (ionization efficiency $\eta \sim 90\%$)

Collider Detector Model	CEPC_v4	CEPC_v4
Beamstrahlung pairs	CEPC Z-pole(91GeV)	CEPC $Higgs(240 GeV)$
BX freq.	1/23 ns	1/680 ns
primary ions/BX	18.20 k	39.26 k
primary ions at any time	2.07×10^{11}	1.5×10^{10}
average primary $\rho_{ion} [nC/m^3]$	0.63	0.05
$\max (\text{single BX}) [nC/m^3/BX]$	0.6×10^{-6}	1.8×10^{-6}
max (steady state) $[nC/m^3]$	5.46	0.62

Max (steady state) ~ max(single BX) × BX freq. × max. drift time × 50% × η primary ions only

Beamstrahlung hit density calculation and estimation

- 18.2k ions/electrons per BX in total \rightarrow per BX all energy lose/26eV (two chambers)
 - ions/electrons along r-direction at Tera-Z
 - Inner radius: 600mm, ions/electrons ~180 hits/cm, hit density~0.48 hits/cm^2/BX
- Total hits ~630 Hits/cm/cm in 30µs (drift time)
 - Readout: 500 μm×500 μm, the readout rate ~31.5k hits/sec, Occupancy ~1.58%
 - The pixelated readout can handle that, obviously the pixelated readout occupancy is low.

Running a pixelated readout TPC at high rates

- Comparison of the background rate with Z rate.
 - A readout with 500 μ m × 500 μ m would work for the Zs with the **reasonable** the beam background.
 - Therefore it is **VERY important** to design a MDI reduces the background.
 - Comparing the ILD and the CEPC (FCC) MDI: backgrounds are a **factor 50 higher** for CEPC (FCC).

			FCC-91	FCC-240	ILC-250	
bunch crossing frequency		30 MHz	800 kHz	6.6 kHz		
model	B-field [T]	MDI	thousand ions / bunch crossing			
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300	
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200	
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110	
ILD_15_v11β	2.0 (uniform)	FCC-ee	390 ± 120	1000 ± 170	110000 ± 2400	
ILD_15_v11γ	2.0 (map)	FCC-ee	270 ± 100	800 ± 140	100000 ± 1900	
removing BeamCal's graphite layer						
ILD_15_v03	3.5 (map)	ILC			1300 ± 170	
ILD_15_v05	3.5 (map, anti-DID)	ILC			590 ± 120	

Daniels from KEK

• Rates and operation gas for TPC

Alternative gases even the higher BK MDI

- The idea is use in the TPC not the T2K gas.
 - Another gas mixture that gives less hits.
 - Less sensitive to the beam background.
- One could think of a He or Ne based gas.
 - The advantage would be: the number of electrons /cm is lower by a factor of about 8 (Ne 2.5) w.r.t. the T2K gas.
 - The probability that the photons (from the beam-beam background) interact with Helium is also a factor of 9 (Ne 5) lower.
 Daniels Jeans from DESY

Neon version of T2K gas: Ne:CF4:iCH4H10 95:3:2 and still reach low transverse diffusion: of about $D_T = 70 \ \mu m/\sqrt{cm}$ at 2 T. Drift field 200 V/cm.

clusters/cm	primary	total
Ne:CF4:iCH4	16.04	46
T2K	26	100

http://cepcsoft.ihep.ac.cn/tpc/gassimu/gas.html

Performance of alternative gases even the higher BK MDI

- Ne:CF4:iCH4H10 95:3:2 gas with $D_T = 70 \ \mu m/\sqrt{cm}$ at 2T.
 - Combined s(1/p) at $cos\theta=0$ is 3.9 (Ne 5.7) 10^-5 /GeV
- TPC can be optimized, even to meet the higher BK MDI at CEPC.

- From the calculation and estimation of Beamstrahlung hit density, the preliminary results shows :
 - The pixelated readout can handle that, obviously the pixelated readout occupancy is low.
- Even operation at the higher BK MDI at CEPC TDR
 - TPC can be optimized and be operated to meet the higher BK MDI at CEPC using the alternative mixture gases.

Many thanks!