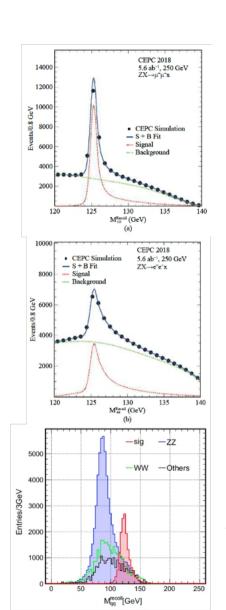

Physics Benchmark & Detector requirements


Yields ~ Xsec * Lumi * Time



- 4 Million Higgs (10 years)
- ~ 1 Giga W (1 year) + 4 Tera Z (2 years)
- Upgradable: Top factory (500 k ttbar)

Physics study: 2023

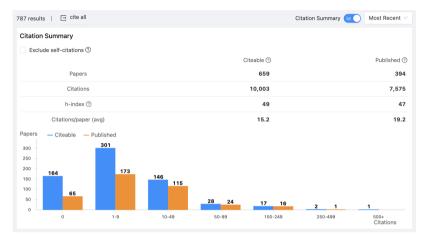
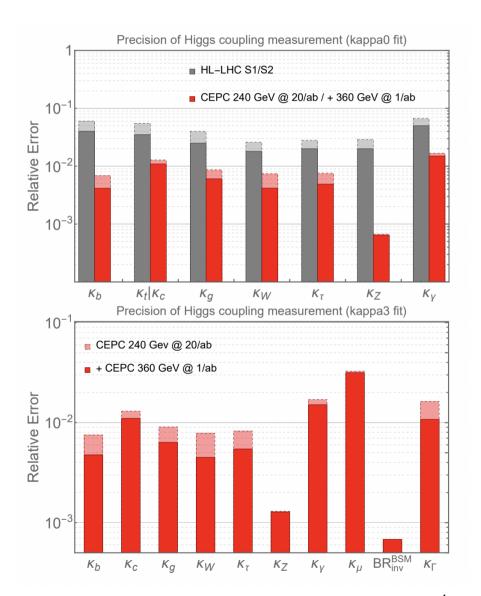


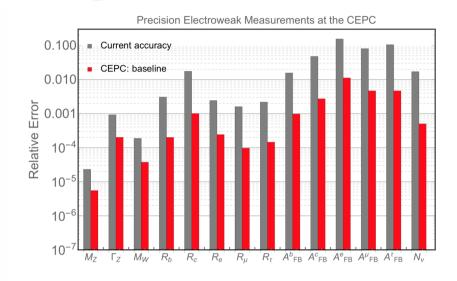
Table 2.1: Precision of the main parameters of interests and observables at the CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC projections of 3000 fb^{-1} data are used for comparison. [2]

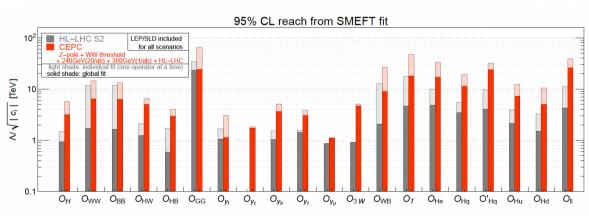
Higgs				W,Z and top		
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision	
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV	
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV	
$\sigma(ZH)$	4.2%	0.26%	M_{top}	760 MeV	O(10) MeV	
$B(H \rightarrow bb)$	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV	
$B(H \to cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV	
$B(H \to gg)$	-	0.81%	R_b	3×10^{-3}	2×10^{-4}	
$B(H \to WW^*)$	2.8%	0.53%	R_c	1.7×10^{-2}	1×10^{-3}	
$B(H \to ZZ^*)$	2.9%	4.2%	R_{μ}	2×10^{-3}	1×10^{-4}	
$B(H \to \tau^+\tau^-)$	2.9%	0.42%	R_{τ}	1.7×10^{-2}	1×10^{-4}	
$B(H o \gamma \gamma)$	2.6%	3.0%	A_{μ}	1.5×10^{-2}	$3.5 imes 10^{-5}$	
$B(H \rightarrow \mu^{+}\mu^{-})$	8.2%	6.4%	A_{τ}	4.3×10^{-3}	7×10^{-5}	
$B(H \to Z\gamma)$	20%	8.5%	A_b	2×10^{-2}	2×10^{-4}	
$Bupper(H \rightarrow inv.)$	2.5%	0.07%	N_{ν}	2.5×10^{-3}	2×10^{-4}	

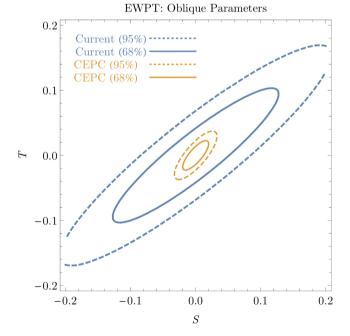

Scientific Significance quantified by CEPC physics studies, via full simulation/phenomenology studies:

- Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude.
- EW: Precision improved from current limit by 1-2 orders.
- Flavor Physics, sensitive to NP of 10 TeV or even higher.
- Sensitive to varies of NP signal.

• ...


Physics reach via Higgs at CEPC


	$240{ m GeV},20~{ m ab}^{-1}$		$360\mathrm{GeV},1\;\mathrm{ab^{-1}}$		
	ZH	vvH	ZH	vvH	eeH
inclusive	0.26%		1.40%	\	\
H→bb	0.14%	$\boldsymbol{1.59\%}$	0.90%	1.10%	4.30%
Н→сс	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
$H{ ightarrow}WW$	0.53%		2.80%	4.40%	6.50%
$H{ ightarrow}ZZ$	4.17%		20%	21%	
H o au au	0.42%		2.10%	4.20%	7.50%
$H \to \gamma \gamma$	3.02%		11%	16%	
$H o \mu \mu$	6.36%		41%	57%	
$H o Z \gamma$	8.50%		35%		
$\boxed{ \text{Br}_{upper}(H \to inv.)}$	0.07%				
Γ_H	1.	65%		1.10%	



EW measurements & SMEFT

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	$2.1 \; \mathrm{MeV} \; [37-41]$	$0.1~{ m MeV}~(0.005~{ m MeV})$	Z threshold	E_{beam}
$\Delta\Gamma_Z$	$2.3 \; \mathrm{MeV} \; [37-41]$	$0.025~{ m MeV}~(0.005~{ m MeV})$	Z threshold	E_{beam}
Δm_W	9 MeV [42–46	$0.5~\mathrm{MeV}~(0.35~\mathrm{MeV})$	WW threshold	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0~\mathrm{MeV}~(1.8~\mathrm{MeV})$	WW threshold	E_{beam}
Δm_t	$0.76~\mathrm{GeV}~[50]$	$\mathcal{O}(10)~\mathrm{MeV^a}$	$t\bar{t}$ threshold	
ΔA_e	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	$0.015 \ [37, 53]$	$3.5\times 10^{-5}\ (3.0\times 10^{-5})$	Z pole $(Z \to \mu\mu)$	point-to-point Unc
$\Delta A_{ au}$	4.3×10^{-3} [37, 51–55]	$7.0\times 10^{-5}\ (1.2\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	$0.02 \ [37, 56]$	$20 \times 10^{-5} \ (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	$0.027 \ [37, 56]$	$30\times 10^{-5}\ (6\times 10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	0.017 [37, 57, 62–65]	$0.001~(2 \times 10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37-41]	$2\times 10^{-4}\ (3\times 10^{-6})$	Z pole	E_{beam} and t channel
δR_{μ}^{0}	0.002 [37–41]	$1\times 10^{-4}\ (3\times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37–41]	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta N_{ u}$	0.0025 [37, 66]	$2\times 10^{-4}\ (3\times 10^{-5}\)$	ZH run $(\nu\nu\gamma)$	Calo energy scale

Flavor Physics White paper

Flavor Physics at CEPC: a General Perspective

Co	ontents	
1	Introduction	2
2	Description of the CEPC Facility	6
	2.1 Key Collider Features for Flavor Physics	6
	2.2 Key Detector Features for Flavor Physics	7
	2.3 Simulation Method	14
3	Charged Current Semileptonic and Leptonic $b\text{-}Flavored$ Hadron Decays	16
4	Rare/Penguin and Forbidden b -Flavored Hadron Decays	22
	4.1 Dilepton Modes	24
	4.2 Neutrino Modes	26
	4.3 Radiative Modes	28
5	CP Asymmetry in b -Flavored Hadron Decays	29
6	Global Symmetry Tests in ${\mathbb Z}$ and $b\text{-}{\bf Flavored}$ Hadron Decays	34
7	Charm and Strange Physics	37
	7.1 Null Tests with Rare Charm Decays	38
8	au Physics	38
	8.1 LFV τ Decays	39
	8.2 LFU Tests in τ Decays	40
	8.3 Hadronic τ Decays and Other Opportunities	42
	8.4 CPV in Hadronic τ Decays	43
9	Exclusive Hadronic Z Decays	44
10	Flavor Physics beyond Z Pole	45
	10.1 $ V_{cb} $ and W Decays	46
	10.2 Higgs Exotic and FCNC	47
	10.3 Top FCNC	49
11	Spectroscopy and Exotics	50
12	Light BSM States from Heavy Flavors	55
	12.1 Lepton Sector	55
	12.2 Quark Sector	57
13	Summary and Outlook	58

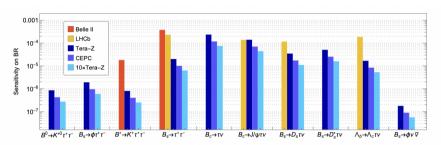


Figure 18: Projected sensitivities of measuring the $b \to s\tau\tau$ [70], $b \to s\nu\bar{\nu}$ [34] and $b \to c\tau\nu$ [35, 62] transitions at the Z pole. The sensitivities at Belle II @ 50 ab⁻¹ [6] and LHCb Upgrade II [17, 71] have also been provided as a reference. Note, the LHCb sensitivities are generated by combining the analyses of $\tau^+ \to \pi^+\pi^-\pi^-(\pi^0)\nu$ and $\tau \to \mu\nu\bar{\nu}$. This plot is adapted from [35].

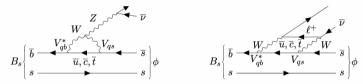


Figure 21: Illustrative Feynman diagrams for the $B_s \to \phi \nu \overline{\nu}$ transitions in the SM. LEFT: EW penguin diagram. RIGHT: EW box diagram.

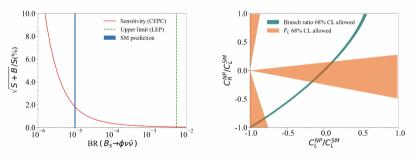
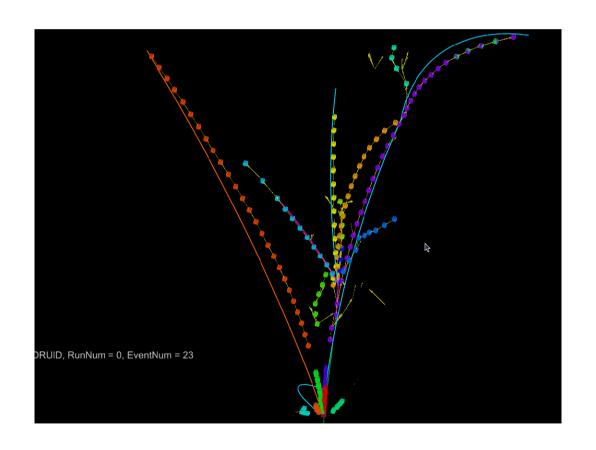
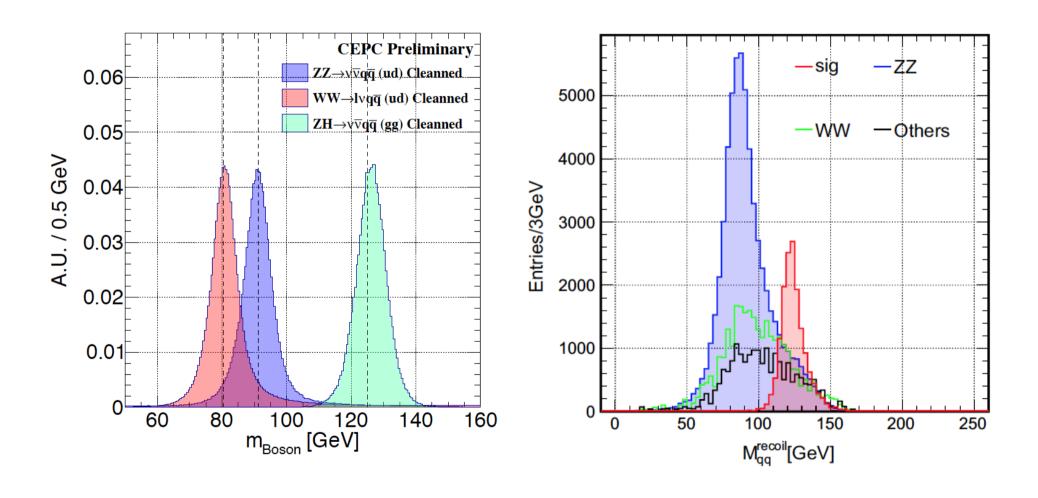


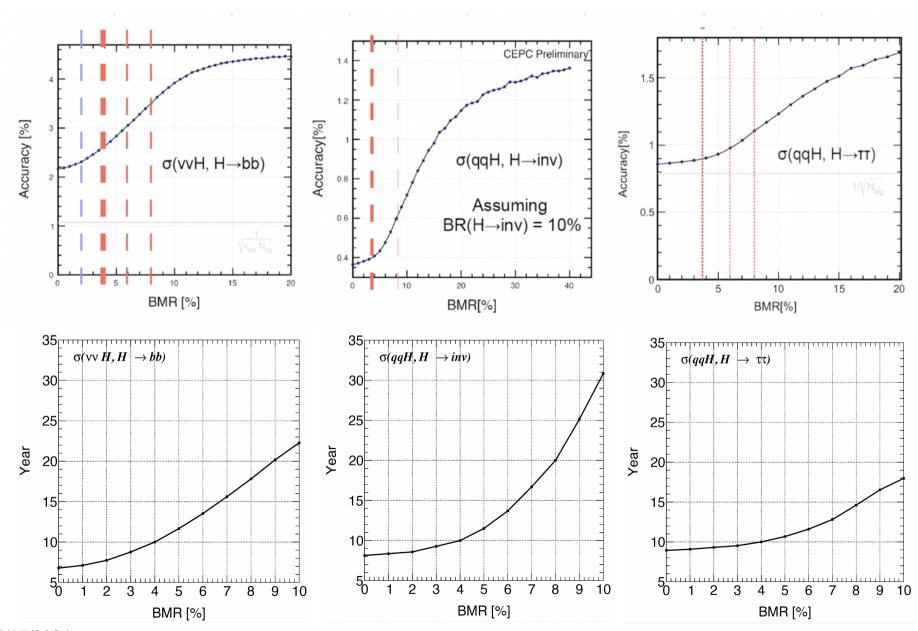
Figure 22: LEFT: Relative precision for measuring the signal strength of $B_s \to \rho \nu \bar{\nu}$ at Tera-Z, as a function of its BR. RIGHT: Constraints on the LEFT coefficients $C_L^{\rm NP} \equiv C_L - C_L^{\rm SM}$ and C_R with the measurements of the overall $B_s \to \phi \nu \bar{\nu}$ decay rate (green band) and the ϕ polarization F_L (orange regions). These plots are taken from [34].

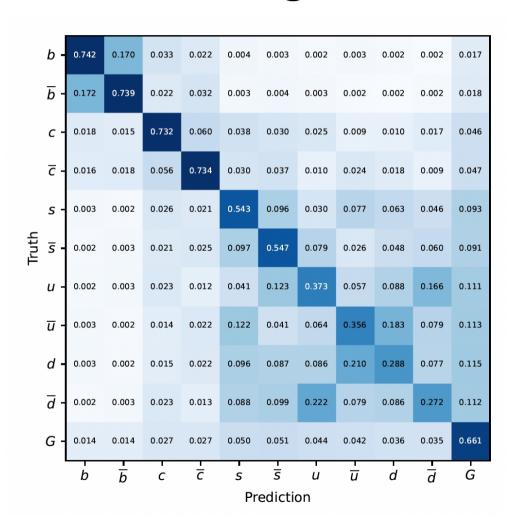

Physics Benchmarks

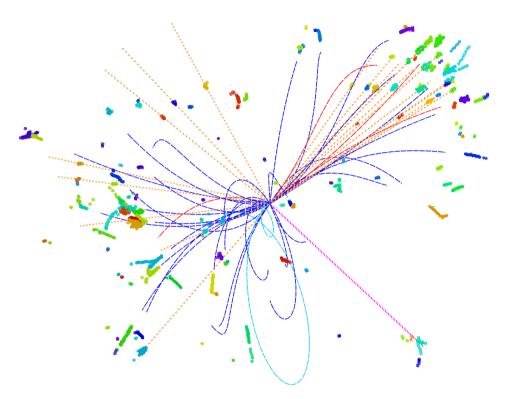
	Processes @ c.m.s.	Domain	Total Det. Performance	Sub-D
H->ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + JOI (Jet origin id)	All sub-D, especially VTX
H->inv	qqH	Higgs/NP	PFA	All
Vcb	WW@ 240/160 GeV	Flavor	JOI + Particle (lepton) id	All
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + JOI	All
$lpha_{\scriptscriptstyle S}$	Z->tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id	ECAL + Tracker material
B->DK	91.2 GeV	Flavor	PFA + Particle (Kaon) id	All, especially Tracker & ToF
Weak mixing angle	Z	EW	JOI	All
Higgs recoil	IIH	Higgs	Leptons id, track dP/P	Tracker, All
H->bb, cc, gg	vvH	Higgs	PFA + JOI	All
	qqH	Higgs	PFA + JOI + Color Singlet id	All
H->di muon	qqH	Higgs	PFA, Leptons id	Calo, All
H->di photon	qqH	Higgs	PFA, Photons id	ECAL, All
W mass & Width	WW@160 GeV	EW	Beam energy	NAN
Top mass & Width	ttbar@360 GeV	EW	Beam energy	NAN
Bs->vvPhi	Z	Flavor	Object in jets; MET	All
Bc->tauv	Z	Flavor	-	All
B0->2 pi0	Z	Flavor	Particle/pi-0 in jets	ECAL

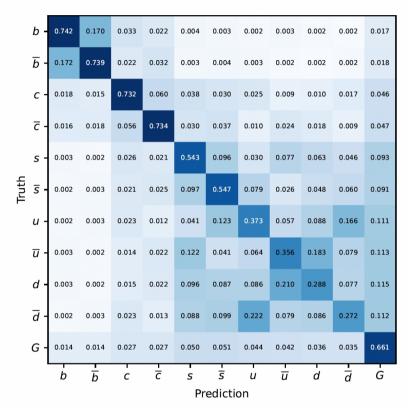

Performance requirements

- A clear separation of the final state particles: Identification of Physics Objects, and Improving the E/P resolution for composited objects, especially jets
 - Leptons, especially these inside jets
 - Composited objects:
 - Two/three body objects: Pi-0, K-short, Lambda, Phi, Tau, D meson...
 - More bodies: Tau & Jets
 - PFA: pursuing 1-1 correspondence.
 - BMR (Boson Mass Resolution): mass resolution of Hadronic decayed Higgs/Z/W
 BMR < 4% for Higgs measurements
 - Much demanding for Flavor Physics/New Physics Hunting
- Pid:
 - Pion & Kaon separation > 3 σ
 - Identify species of all charged final state particles: isolated and in jet...
- Jet origin id: Flavor Tagging & Charge Reconstruction, s-jet id, gluon jet id, etc
- Intrinsic accuracies: momentum, energy, VTX positions...

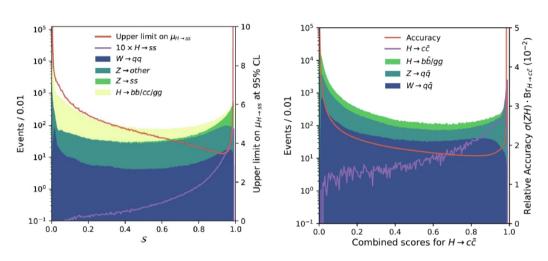

PFA

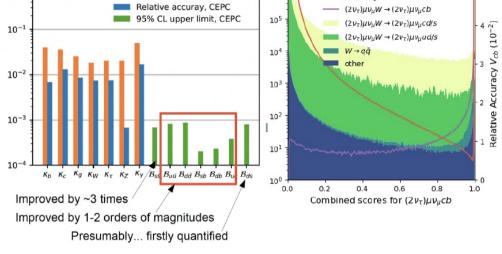

Boson Mass Resolution: Key Per. Para


BMR: impact on critical measurements



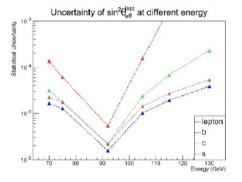
Jet origin id

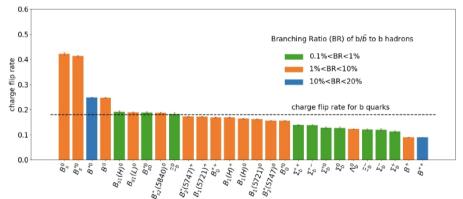

Jet origin id



- Jet origin identification: 11 categories (5 quarks + 5 anti quarks + gluon)
 - Jet Flavor Tagging + Jet Charge measurements + s-tagging + gluon tagging...
- Full Simulated vvH, Higgs to two jets sample at CEPC baseline configuration: CEPC-v4 detector, reconstructed with Arbor + ParticleNet (Deep Learning Tech.)
- 1 Million samples each, 60/20/20% for training, validation & test

Impact on Physics

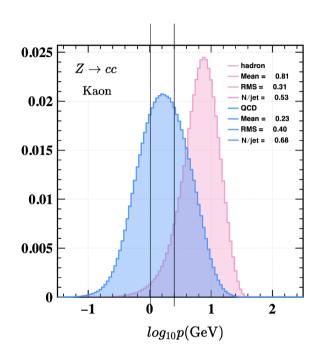


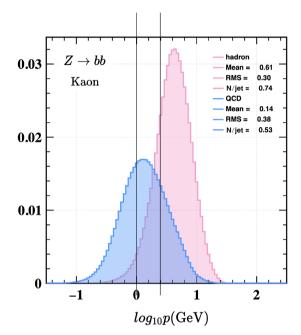

Accuracy

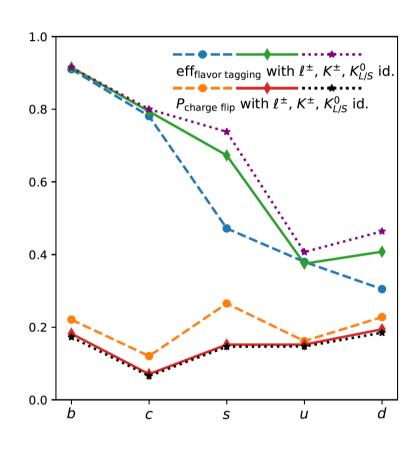
Relative accuray, HL-LHC S2

Expected statistical uncertainties on $\sin^2 \theta_{eff}^l$ measurement. (Using one-month data collection, ~ **4e12/24** Z events at Z pole)

\sqrt{S}	b	С	S
70	1.6×10^{-5}	3.2×10^{-5}	2.2×10^{-5}
75	1.3×10^{-5}	1.8×10^{-5}	1.8×10^{-5}
92	1.6×10^{-6}	2.2×10^{-6}	2.2×10^{-6}
105	1.0×10^{-5}	2.4×10^{-5}	1.4×10^{-5}
115	1.9×10^{-5}	6.8×10^{-5}	2.7×10^{-5}
130	3.9×10^{-5}	2.3×10^{-4}	5.4×10^{-5}

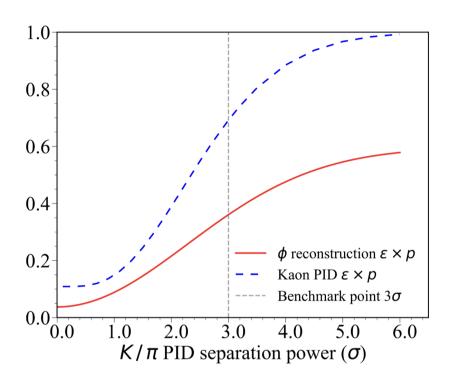


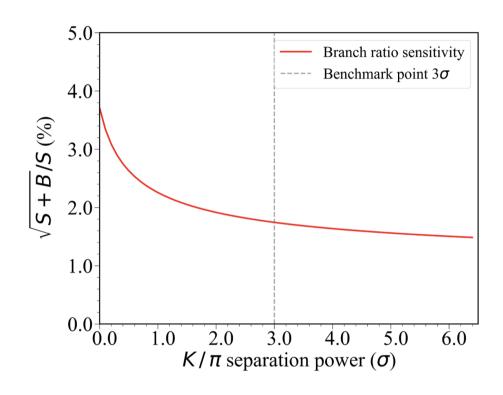

Particle identification


1. Kaon id

2. all species... + inside jets

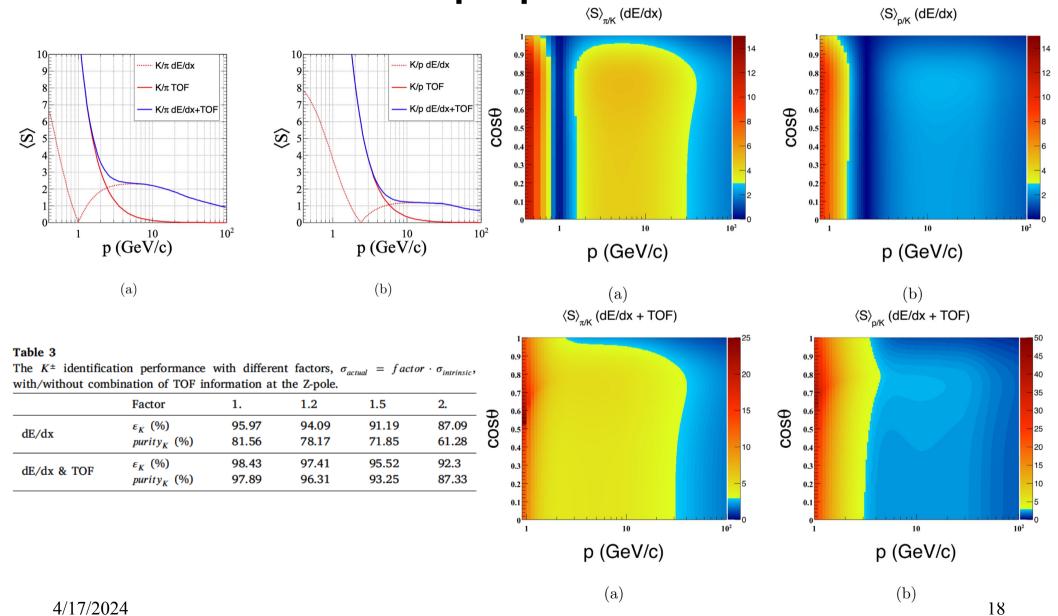
Momentum spectrum of Kaon...



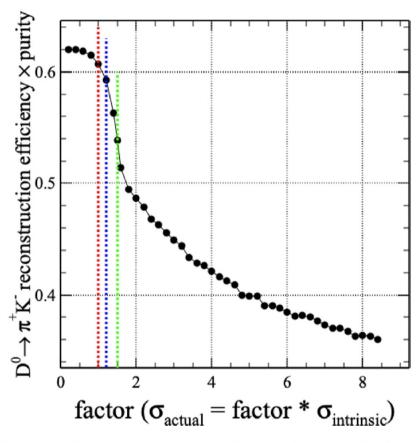

Charged Kaons from B/D hadrons → Flavor Physics

Charged Kaon from QCD → QCD

Both Contributed significantly to Jet Origin ID


Sep power < 3 sigma

values $\mu_{K(\pi)}$ and corresponding standard deviations $\sigma_{K(\pi)}$. The separation power is defined as $2|\mu_{\pi} - \mu_{K}|/(\sigma_{\pi} + \sigma_{K})$.


Sep. power

Requirement on dE/dx & dN/dx

Y. Zhu, S. Chen, H. Cui et al.

Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167835

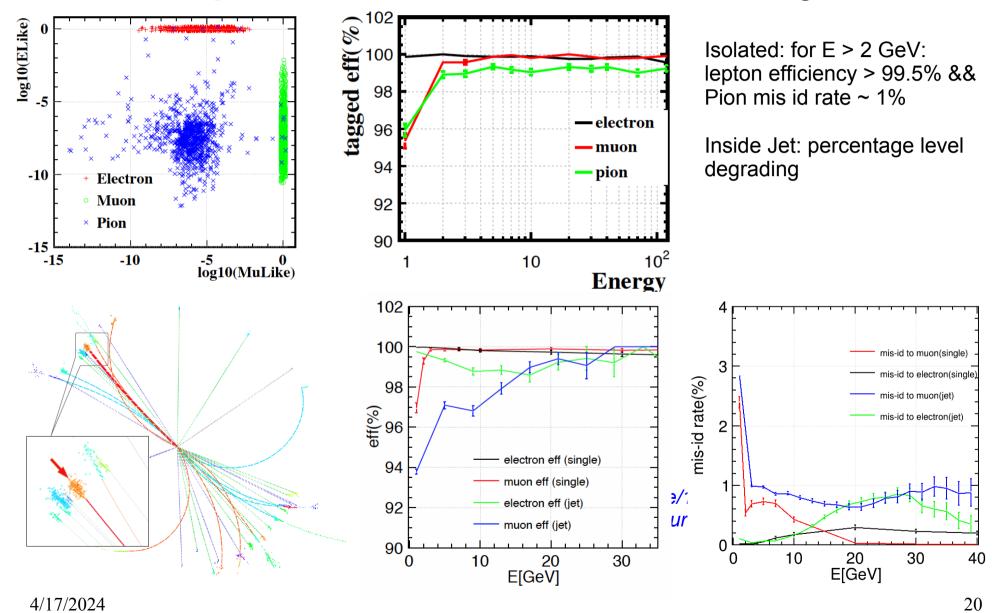

 → K⁺K⁻ reconstruction efficiency × purity
 50
 90
 90
 90
 90
 90
 90
 90 dE/dx Resolution (%) $\sigma_{\rm I}/{\rm I} \propto 2.5 - 1.5(\cos\theta)^4$ $+3.9(\cos\theta)^{10}$ -0.50.5 $cos\theta$ factor ($\sigma_{actual} = factor * \sigma_{intrinsic}$)

Fig. 12. The distribution of $D^0 \to \pi^+ K^-$ reconstruction performance as a function of the factor defined in $\sigma_{actual} = factor \cdot \sigma_{intrinsic}$. The red/blue/green line corresponds to the 0%/20%/50% degradation of dE/dx resolution.

Fig. 13. The distribution of $\phi \to K^+K^-$ reconstruction as a function of the factor defined in $\sigma_{actual} = factor \cdot \sigma_{intrinsic}$. The red/blue/green line corresponds to the 0%/20%/50% degradation of the dE/dx resolution.

➤ 3% dE/dx resolution in the barrel for E > 2 GeV tracks

Lepton: isolated & Inside jet

Summary

- Physics Benchmarks selected, while new proposals are welcome
 - Based on existing study
 - Emphasize on Higgs (inc. Dark matter), and covers all observation channels.
- Corner stone performances
 - BMR: < 4% as a must... and shall pursue 3%
 - Jol: ~ baseline performance: b/c/s jet eff of 90/80/70% & charge flip rate of 10 20%
 - Pid: to identify all species of final state particles, inside jets, especially for charged Kaons.
- Sub-d performance:
 - Tracker dP/P \sim o(0.1%),
 - EM energy resolution ~ 3%/sqrt(E) \conv 0.3% ,
 - Had energy resolution ~ 50%/sqrt(E) \conv 2% .

Back up

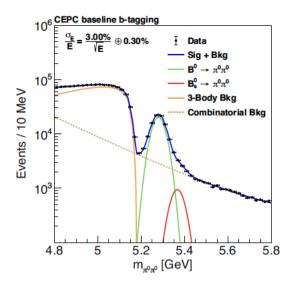
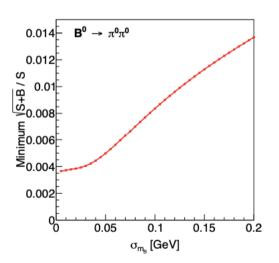



Figure 6. The reconstructed $m_{\pi^0\pi^0}$ distributions of $B^0 \to \pi^0\pi^0$, $B_s^0 \to \pi^0\pi^0$, and $Z \to q\bar{q}$ background after applying the baseline *b*-tagging and selections on energy and opening angle of π^0 pairs when the ECAL energy resolution is $\frac{3\%}{\sqrt{E}} \oplus 0.3\%$.

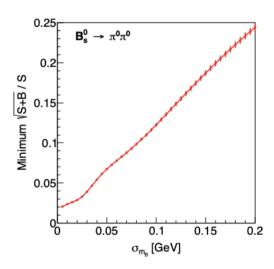
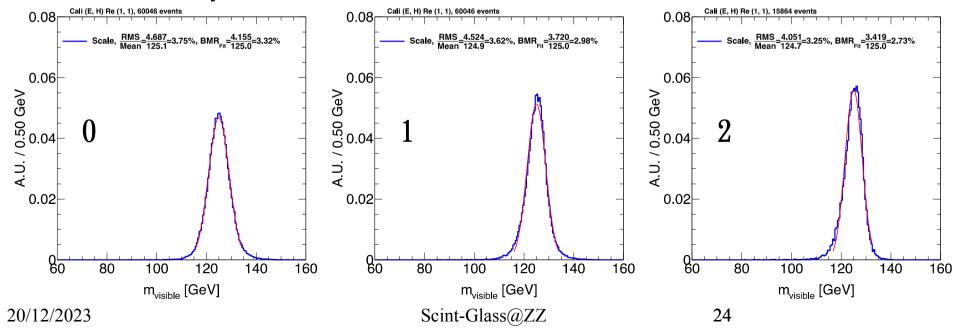


Figure 26: Relative statistical uncertainties of BR($B^0 \to \pi^0 \pi^0$) (left) and BR($B^0_s \to \pi^0 \pi^0$) (right) versus B-meson mass resolution σ_{m_B} with four-photon final states. Plots taken from [32].

Charged fragment veto at Truth level

SiWECAL + GSHCAL (ideal parameter)


0: BMR ~3.32%, original

1: BMR ~2.98%, remove charged fragments

2: BMR ~2.73%, remove charged fragments + "Null MCP" event cut

PS: Two cases of "Null MCP" (fail to link to MCTruth Particle)

- PFO reconstructed by Energy Flow
- PFO caused by LumiCal Hits

