CEPC tracker R & D Zhijun Liang (On behalf of the CEPC physics and detector group) Institute of High energy physics, CAS

CEPC physics program

An extremely versatile machine with a broad spectrum of physics opportunities

 \rightarrow Far beyond a Higgs factory

Operation mode			ZH	Z	W+M-	tī
\sqrt{s} [GeV]			~240	~91.2	~160	~360
	Run	time [years]	[years] 10 2 1 5			
		$L / IP [\times 10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ 3 32 10		-		
CDR (30 MW)		$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run Time [years]		10	2	1	~5	
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
est	50 MW	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
Late		$\int L dt$ [ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

- Huge measurement potential for precision tests of SM: Higgs, electroweak physics, flavor physics, QCD/Top
- Searching for exotic or rare decays of H,
 Z, B and τ, and new physics
- **CEPC community joined ECFA Phy focus**
 - Aiming towards next ESPPU Updates.

Both 50 MW and $t\bar{t}$ modes are currently considered as CEPC upgrades.

Vertexing and tracking detector and physics case

PID capability: 3 sigma K/pi separation power to 20GeV track

▶ TPC (or drift chamber) + Low Gain Avalanche Detector (LGAD) base time of flight detector

$\bigstar H {\rightarrow} Z \gamma \text{ and } H {\rightarrow} Z Z \ast \text{ or } H {\rightarrow} Z \gamma \ast$

Key detector issue: Low energy tracks from Z*and γ* reconstruction, photon conversion

↔ H→bb/cc/gg

Vertexing and impact parameter measurement is the key

Silicon Pixel Chips for Vertex Detector

JadePix-3 Pixel size ~ $16 \times 23 \ \mu m^2$

Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

MOST 1

Goal: $\sigma(IP) \sim 5 \mu m$ for high P track

CDR design specifications

- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, COFFEE

TaichuPix-3, FS 2.5x1.5 cm² 25×25 μm² pixel size

CPV4 (SOI-3D), 64×64 array ~21×17 μm² pixel size

Develop **COFFEE** for a CEPC tracker using SMIC 55nm HV-CMOS process

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

MOST 2

TaichuPix3 vertex detector prototype beam test @ DESY

beam direction

Spatial resolution ~ 5 μm

Columnfpixe

Silicon Tracker using HV-CMOS: ATLASPix → CEPCPix

- □ Large area: ~70 m² in TPC+SiTrk → Cost effectiveness
- □ Focus on MAPS pixel tracker, also started SSD for outer layers
- □ Joint efforts on an ATLASPix3 based demonstrator
- □ ATLASPix & MightyPix use TSI 180nm HV process
- □ Exploring SMIC 55 nm HV HR proces
 - ➔ Smaller feature size & alternative foundry
- □ Other possibilities, e.g. MALTA3, TPSCo-65nm

The 2nd design for SMIC 55nm HV HR process

Hitmap with Fe55 source

Hitmap with electron beam

Collaboration with UK/Germany/Italy colleague

Time of flight detector

- ***** A new type of TOF detector for CEPC is under R & D
 - Based on Low Gain Avalanche Detector (LGAD) technology
 - Synergy with ATLAS high granularity timing detector
 - Aim to have good time and spatial resolution(50ps and 10um)

AC-coupled strip LGAD

Roadmap of CEPC TPC detector R&D

- **CEPC TPC detector prototyping roadmap:**
 - From TPC module to TPC prototype R&D for Higgs and Tera-Z
 - Easy-to-install modular design of **Pixelated readout TPC for CEPC TDR**
- * Achievement by far:
 - Supression ions hybrid GEM+Micromegas module
 - IBF×Gain ~1 @ G=2000 validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r\phi} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - ► FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

TPC prototype with integrated 266nm UV laser

Activity international collaboration - TPC technology R&D

- Activity collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore Ø: 85cm, Spatial resolution of $\sigma_{r\phi} \leq 100 \ \mu m$
 - Collaboration implement improvements in a pixelated readout TPC for CEPC TDR

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

Drift chamber R&D and beam test

Drift chamber R&D, Synergy with IDEA

***** Beam tests organized by INFN group:

- Two muon beam tests performed at CERN-H8 ($\beta\gamma > 400$) in Nov. 2021 and July 2022
- A muon beam test (from 4 to 12 GeV/c) in 2023 performed at CERN
- Ultimate test at FNAL-MT6 in 2024 with π and K (By = 10-140) to fully exploit the relativistic rise.

Contributions from IHEP group:

- Participate data taking and collaboratively analyze the test beam data
- Develop the machine learning reconstruction algorithm

Summary

*****Tracker key technology R & D and tracker optimization is on-going

PID system optimization and R & D

CEPC Conceptual design report

Tracker optimization on-going toward reference TDR

backup

Roadmap of CEPC TPC detector R&D

- **CEPC TPC detector prototyping roadmap:**
 - From TPC module to TPC prototype R&D for Higgs and Tera-Z
 - Easy-to-install modular design of **Pixelated readout TPC for CEPC TDR**
- * Achievement by far:
 - Supression ions hybrid GEM+Micromegas module
 - IBF×Gain ~1 @ G=2000 validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r\phi} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - ► FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

TPC prototype with integrated 266nm UV laser

Status of Pixelated readout TPC for CEPC TDR

Simulation and R&D of Pixelated TPC readout for CEPC TDR

- Macro-Pixel TPC ASIC chip was started to developed and 2nd prototype wafer has done and tested
 - $500\mu m \times 500\mu m$ pixel readout designed
 - Noise of FEE: 100e
 - Time resolution: 14bit (5ns bin)
 - Power consumption: ~100mW/cm2 (2nd prototype)

✤ Prototyping pixelated TPC detector at IHEP

- Principle of the prototype is no problem for testing
- Developed prototype and aim for beam test @ DESY in 2024 with LCTPC collaboration

FEE ASIC chip R&D

Activity international collaboration - TPC technology R&D

- Activity collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore Ø: 85cm, Spatial resolution of $\sigma_{r\phi} \leq 100 \ \mu m$
 - Collaboration implement improvements in a pixelated readout TPC for CEPC TDR

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

Drift chamber R&D and beam test

Silicon detector R & D (vertex, silicon tracker, LGAD TOF detector)

*****Gas detector (TPC, Drift chamber)

PFA calorimetry : ECAL and HCAL

*****Solenoid Magnet

CEPC Detector Conceptual Designs

TaichuPix3 vertex detector prototype

New pickup tools

Ladder on wire bonding machine

Dummy ladder glue automatic dispensing using gantry

The first vertex detector (prototype) ever built in China

adder support tools

Jadepix3/TaichuPix3 beam test @ DESY

Collaboration with CNRS and IFAE in Jadepix/TaichuPix R & D

TaichuPix3 vertex detector prototype beam test @ DESY

Silicon Tracker using HV-CMOS: the SMIC 55nm chips

MPW SMIC 55nm HVCMOS (COFFEE2 chip)

- CMOS SENOSR IN FIFTY-FIVE NM PROCESS (COFFEE)
- ▶ Submitted in Aug 2023, Received at the end of 2023.
- High-res wafer of 1k or 2k Ωcm available
- Breakdown voltage up to 70V (enough depleted depth)

COFFEE2 floorplan

COFFEE2 photo

