Tiny Particles in The Giant Detector

Reconstruct 10-GeV Scale Neutrinos Using Convolutional Neural Networks in IceCube

Seminar @ iHEP, Beijing

Shiqi Yu

University of Utah

Outlines

Neutrino oscillation in IceCube
10-GeV scale neutrino reconstruction in IceCube
Performance of CNNs on low-energy events
Oscillation result and future outlook

Neutrino oscillation in IceCube

Neutrinos

- Second most abundant particles in the Universe.
- Have 3 flavors: electron, muon, and tau
- Interact via weak interactions

Many interesting questions.....

Why study neutrino physics?

Neutrinos raise many interesting questions:

- Why are the neutrino masses so small?
 - Ordering of neutrino masses?
 - Why does neutrino mixing look very different from CKM?
- Is there CP violation in lepton sector?
 - Why is the Universe dominated by matter?

Area of squares represents

square of matrix elements.

Neutrino Oscillations

 Δm^2

 Δm^2

Created in one flavor (v_{μ}) , but detected in another (v_{e})

Each flavor (e, μ , τ) is a superposition of masses (1, 2, 3)

• Oscillations among the three neutrino flavors described by: • The mixing angles (θ_{23} , θ_{13} , θ_{12}), δ_{CP}

• The squared mass differences: Δm_{32}^2 , Δm_{21}^2

v_{μ} disappearance

 $P_{\nu_{\mu} \to \nu_{\mu}}(L) \approx 1 - \sin^2 2\theta_{23} \cdot \sin^2 \left(\frac{1}{4} \cdot \Delta m_{32}^2 \cdot \frac{L}{F}\right)$

* two flavor approximation

What we need to reconstruct:

- Neutrino energy (E)
- Distance of travel (L)
- Variables to select signal (v_{μ}) dominating dataset with reliable reconstruction performance
- What we want to measure:
 - Mixing angle (θ_{23})

• Mass squared different Δm^2_{32}

IceCube studies atmospheric neutrinos

8

Atmospheric Neutrino Oscillations

Atmospheric neutrino flux is v_µ dominated good for studying v_µ disappearance
Wide range of baseline

Use zenith angle in detector to determine L

 \rightarrow 2D measurement in L vs. E

Oscillation Measurement: Baselines vs. Energies

* two flavor approximation

Low-energy (< 100 GeV) reconstruction is critical to oscillation analysis

IceCube Detector

DeepCore strings

IceCube strings

400

10-GeV scale neutrino reconstruction in IceCube

Typical 10-GeV Scale Events

Less light produced in low-E events: fewer pulses recorded by PMTs

- Need to consider IceCube/DeepCore array separately for spatial density and optical differences
- Need to optimize reconstructions for different variables

Challenges to reconstruct

- Direction
- Energy
- Track vs. cascade classification

Track-like events: v_{μ} CC, 17% v_{τ} CC

Cascade-like events: v_e CC, NC, v_τ CC

DeepCore Detector

- More densely instrumented in lower center, about 5x higher effective photocathode density
 Detects lower energy events
 - Instruments total of 15 MTon
- Use the IceCube array to veto cosmic ray muon background

Convolutional Neural Network

Convolutional Neural Network:

CNN kernel (shadow) moving across the input map (blue) to extract features as output map (green).

CNN in IceCube:

CNN Gif Credit: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Convolutional Neural Networks

- Only use DeepCore & nearby IceCube strings;
- Noise cleaning applied & hit time within [-500, 4000] ns
- Five CNNs trained: optimized individually;
- Comparable resolution to the current likelihood-based*
 *Eur. Phys. J. C 82 (2022) 9, 807

Inputs: 5 summarized variables from all pulses hitting PMT

- sum of charges
- time of first (last) hit
- charge weighted mean (std.) of times of hits

Five reconstructed variables:

- PID: v_{μ} CC vs. others
- Neutrino Energy
- Direction (L)
- Interaction vertex
- Atm. muon classifier

Analysis binning Selections

Convolutional Neural Networks

Only use DeepCore & nearby IseCube strings.

8 coi

- Noise cleaning applied & hit time training/development ns
- Five CNNs trained: optime
- Comparable resolution to method;

DeepCore (8 x 60 x 5

Julia Willison Former MSU Undergrad

IceCube near DeepCore 8 convolutional layers

Inputs: 5 summarized variables from all pulses hitting PMT

> sum of charges time of first (last) hit charge weighted mean (std.) of times of hits

ructed variables:

Jessie Micallef CC vs. others Former MSU Grad • Neutrino Energy • Direction (L) • Interaction vertex

Atm. muon classifier

Analysis binning Selections

Training Samples: Energy & Interaction Vertex

- ~ 7 million v_{μ} CC events
 - Flat energy sample in region of interest
 1-200 GeV target
 Extended to 500 GeV
 - nDOM >= 7
 - Loss: Mean Absolute Percentage Error

Training Samples: Zenith

~5 million v_{μ} CC events

Flat zenith sample across all zenith angles

 5-300 GeV
 Containment cut on true starting & ending points

 Loss : MSE

Training Samples: Neutrino Identification (PID)

~6 million neutrino events in 5-200 GeV

- Track: v_{μ} CC
- Cascade: v_{μ} NC and v_{e} • Loss: Binary Cross Entropy

Training Samples: Muon Classification

~7 million events

- Neutrinos are in 5–200 GeV
- Muon events: lower-level MuonGun (L4)
 - Before low-level muon BDT filter for more statistics
- nDOM >= 4
- Loss: Binary Cross Entropy
- Used as an input to a final muon BDT for a better performance on final level muon rejection

Performance of CNN Reconstruction

Testing Samples

Nominal MC sample with flux, xsec, and oscillation weights applied;
 Testing on signal (v_µ CC) and major background (v_e CC);

Baseline: likelihood^µ based method

Performance: Energy

• Flat median against true neutrino energy;

- CNN has better resolution at low energy (majority of sample)
- Comparable performance to likelihood method at higher energy and in background;

Performance: Zenith

- Flat median against true direction;
- Comparable to current method in both signal and background.

Performance: Vertex

Selecting events starting near DeepCore;

- Comparable purities* in selected v_u CC samples.
 - *Selected events are truly contained.

Performance: Muon and PID Classifiers

- Comparable performance to the current methods:
 - Similar AUC values.
- Hard to identify track from cascades at low energy → less DOMs see photons.

Performance: Speed

	Second per file (~3k events)	Time for full sample assuming 1000 cores
CNN on GPU	21	~ 13 minutes
CNN on CPU	45	~ 7.5 hours
Current Likelihood-based method (CPU only)	120,000	~ 46 days

• CNN runtime improvement: about 5,000 times faster;

• CNNs are able to process in parallelize with clusters \rightarrow can be even faster!

Big advantage: large production of full Monte Carlo simulations ~O(10⁸).

Oscillation result and future outlook

Application in Oscillation Analysis

A compatible and complementary result compared with the existing measurements, with room for future improvements (MC models, calibration, reconstruction, etc...)

• Competitive on Δm^2_{32} measurement.

32

Future

Upcoming DeepCore results of neutrino physics:

• mass ordering, non-standard interaction, etc...

New reconstruction development: GNN, RNN, Transformer...

The Upgrade detector:

- More densely instrumented strings in the center
 - Better event resolution!
- DOM: multiple PMT designs
 - Great for calibration studies!
- Target deploying 2025/26

After 3 years running, expect 20-30% improvement on the sensitivity to the atmospheric mixing parameters θ_{23} and Δm_{32}^2

Atmospheric neutrino

Enabling Multimessenger Science and Neutrino Physics with Machine Learning in IceCube

34

Conclusion

• CNNs are used for multipurpose reconstructions for IceCube oscillation analysis:

- Energy, direction, interaction vertex;
- PID (numu CC vs. background neutrinos), muon classifier.
- Approximately 5000 times faster in runtime than the current method;
 - Big advantage for IceCube full production \rightarrow large atmospheric neutrino sample.
- CNNs have better or comparable performances to the traditional likelihood-based reconstruction method;
- The result using CNN-reconstructed neutrino dataset reports compatible and complementary measurement on v_{μ} disappearance parameters
- Many more ML developments and applications in IceCube in all energy range for different scientific motivations.

2025/26 winter: Will drill 7 holes and deploy Upgrade strings/DOMs! Chance to visit the Pole!

Thank you!

>400 collaborators
>200 students and postdocs
>60 institutes over 14 countries

IceCube Collaboration Meeting in 2025 Fall will be @ U of Utah!

IceCube Collaboration Meeting March 2024, Munster, Germany

Overflow slides