

Data flow and data processing at LHCb

Zan Ren

School of Physical Sciences, UCAS

May 20

Chengdu, Sichuan

About LHCb detector

• Single-arm, forward. Specifically designed for heavy-flavour physics.

> Excellent tracking and vertexing $\sigma(p)/p < 1\% @ \epsilon_{track} > 96\%$ $\sigma(IP) = (15 + 29/p_T) \mu m$

\succ Excellent PID

 $\epsilon_{\text{PID}}(K) \approx 95\% \text{ @ MisID}(\pi \to K) \approx 5\%$ $\epsilon_{\text{PID}}(\mu) \approx 97\% \text{ @ MisID}(\pi \to \mu) \approx 3\%$

JINST3 (2008) S08005 IJMPA 30 (2015) 1530022

LHCb upgrade (Run3)

• The data flow of Run2 will be briefly reviewed in this talk, with a focus on Run3.

Almost a new detector!

- A factor of 5 luminosity increase.
- $L = 2 \times 10^{33} \,\mathrm{cm}^2\mathrm{s}^{-1}$
- Expect 23 fb⁻¹ by 2025 (Run 3)
- Expect 50 fb⁻¹ by 2031 (Run 4)
- Pile-up ~6 interactions.

More data, more challenges!

- Storage (space)
- Bandwidth (speed)
- Algorithm (data quality, UE, ...)

Overview of old LHCb data flow

Triggers:

Challenges from the MHz era

Run 3: Luminosity of $2x10^{33}$ cm⁻²s⁻¹, $\sqrt{s} = 14$ TeV

LHCb Run3 is here! (@MHz level).

Bandwidth [MB/s] ~ Trigger output rate [kHz] x average event size [kB]

- Read out the full detector
 - No "simple" local selection criteria
 - → Efficient hardware trigger not possible!
- Selective persistency events as output to storage
 - Up to 100 kB event size, can only transfer 10 GB/s

to long-term storage

→ At most 100 kHz if full raw event is stored!

Trigger design goal:

LHCb data flow in Run3

• LHCb Run 3 data flow

Part 1 Online data processing: HLT1 & HLT2

Hardware infrastructure of DAQ system

- Data acquisition system
 - Gather information from 1M electronic channels from the full detector
 - ~160 computer servers (equipe with 480 custom electronic cards)
 - Output rate to HLT1: 4~5 TB/s (30 MHz)

- Hybrid architecture:
 - HLT1: GPUs installed in Event Builder Servers
 - HLT2: CPUs in Event Filter Farm

Full software triggers

- High Level Trigger 1 (HLT1):
 - Full charged particle track reconstruction
 - Few inclusive single and two-track selections
- High Level Trigger 2 (HLT2):
 - Aligned and calibrated detector
 - Offline-quality track reconstruction
 - Particle identification
 - Full track fit

Comparison to Run 2 trigger

- 5x higher pileup
- 30x higher rate into HLT1
- Disk buffer reduces from $O(\text{weeks}) \rightarrow O(\text{days})$
- Up to 10x efficiency improvement for some physics channels

Huge computing challenge

LHCb Run 3 Trigger Diagram
30 MHz inelastic event rate (full rate event building)
Software High Level Trigger
Full event reconstruction, inclusive and exclusive kinematic/geometric selections
Buffer events to disk, perform online detector calibration and alignment
Add offline precision particle identification and track quality information to selections
Add offline precision particle identification and track quality information to selections Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers
Add offline precision particle identification and track quality information to selections Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers

HLT1 reconstruction & selection sequence

HLT1 on GPUs

- GPU code is executed on many "threads"
 - Threads are organized in a "grid", where a fixed set of threads is grouped into one "block".
 - Each thread processes the same instructions, but on different data.
- Thousands of events are processed in parallel
- Only single precision is used
- Memory transfers are hidden behind calculations:
 - Several pipelines of HLT1 sequences are processed in parallel on "CUDA streams"

HLT1 computing throughput

- 30 MHz goal can be achieved with O(200) GPUs (maximum the Event Builder server can host is 500)
- Throughput scales well with theoretical TFLOPS of GPU card
- Additional functionalities are being explored

The Allen project

- Named after Frances E. Allen
- Fully standalone software project:
 - <u>https://gitlab.cern.ch/lhcb/Allen</u>
- Framework developed for processing HLT1 on GPUs

Frances Allen 1932~2020

- Cross-architecture compatibility via macros & few coding guide lines
 - GPU code written in CUDA, runs on CPU, Nvidia GPUs (CUDA), AMD GPUs (HIP)
- Algorithm sequences defined in python and generated at run-time for multi-event processing
 - Sequence: algorithms to run based on required inputs & properties
- Memory manager
 - Large chunk of GPU memory allocated at start-up, pointers within this chunk assigned by memory manager

HLT1 tracking performance

- Run 2 performance maintained at x5 instantaneous luminosity
- Excellent track reconstruction efficiency (> 99% for VELO, 95% for high-p forward tracks)
- Good momentum resolution and fake rejection

Track reconstruction efficiency

HLT1 selection performance

- Inclusive rate for the main HLT1 lines ~ 1 MHz
- O(30) lines implemented so far:
 - Cover majority of LHCb physics program (B, D decays, semileptonic, EW physics)
 - Special lines for monitoring, alignment and calibration
 - Additional trigger lines under development

Online alignment & calibration

• Efficient and pure selections require offline-quality reconstruction at the HLT2 level

- Run alignment & calibration before HLT2
 - Better mass resolution
 - Better track quality
 - Less background
- \rightarrow use output bandwidth more efficiently

LHCb-FIGURE-2022-019

HLT2 on CPUs

- Fully aligned & calibrated detector, offline quality track fit & particle identification @ 1MHz
- HLT2 throughput significantly improved over last years
- Hundreds of exclusive selections being written for specific analyses, using new multi-threaded framework

LHCb-FIGURE-2022-005

HLT2: Selective persistency (Turbo stream)

17

Storage

80 Gbit/s

Part 2: Offline data processing: Sprucing, AP, user analysis

Sprucing

- Centralized offline data processing, selections and streaming that runs on the output of HLT2 in Run 3 and beyond. The Sprucing runs in two forms:
 - Passthrough is for the HLT2 TURBO stream. The Sprucing serves a similar purpose as Tesla of Run 2, changing the file format from MDF to DST and creating summary records for luminosity information.
 - Exclusive is for the HLT2 FULL stream. This data is too "big" (in terms of bandwidth) to go straight to disk and so a second set of physics selections are run to Slim and PRUNE the data.

The exclusive Sprucing lines are used when

(A) all of the following 4 conditions are met.

- 1. Inclusive HLT2 triggers on "interesting" events
- 2. Full reconstruction of triggered events saved to tape
- 3. The line re-analyses (trimming & skimming) the events offline
- 4. Output saved to disk and available to analysts

Or (B) for running intensive data selection or processing algorithms offline.

Analysis productions

- The old/legacy way: User directly submit jobs to LHCbDIRAC
 - They are imperative jobs where each one has exactly specified input data and cannot be adjusted to adapt to current grid conditions.
 - Usually thousands of jobs, affected by site downtimes and infrastructure instabilities.
- The new/modern way: Analysis Productions (AP)
 - Centrally manage the processing of LHCb data and simulation in a coordinated manner
 - Submission via YAML: Essential details such as input data bookkeeping query, job configuration, ...
 - Automatically handling failures and adapting file grouping strategies
 - Comprehensive pipeline tests on the GitLab CI platform to ensure that job configurations are valid before approval, minimizing waste of computing resources.
 - Better output data accessibility and convenient analysis preservation

defaults: application: DaVinci/v45r4 wg: WG automatically_configure: yes turbo: no inform: - someone@cern.ch options: - make_ntuple.py output: DVNtuple.root My_MagUp_job: input: bk_query: /some/MagUp/bookkeeping/path.DST n_test_lfns: 3 # only to be used in special cases

My_MagDown_job:

input:

bk_query: /some/MagDown/bookkeeping/path.DST

Analysis software

- DaVinci: Application for processing and tuple making via AP for further analysis.
- Tools for nTuple making: C++ class built upon the Gaudi functional framework, and offers a userfriendly Python interface.

DecayTreeTuple (Run1&Run2) Array of Structures (AoS)

FunTuple (Run3 & beyond) Structure of Arrays (SoA)

- Many information allowed to be added:
 - Trigger info, ThOr functors, DTF, MC truth info,

Data flow of the three flavours of FunTuple component

```
from DaVinci import Options, make_config
from DaVinci.algorithms import create_lines_filter
from PyConf.Algorithms import PrintDecayTree
from PyConf.reading import get_particles

def print_decay_tree(options: Options):
    turbo_line = "Hlt2BsToJpsiPhi_JPsi2MuMu_PhiToKK_Line"
    input_data = get_particles(f"/Event/HLT2/{turbo_line}/Particles")
    user_algorithms = [
        create_lines_filter("HDRFilter_SeeNoEvil", lines =[ f"{turbo_line}"]),
        PrintDecayTree(name="PrintBsToJpsiPhi", Input=input_data)
    ]
    return make_config(options, user_algorithms)
```

A minimal demo of Run3 DaVinci script

User analysis

Conclusion

- Online:
 - Full software-based high-level trigger for LHCb Run3
 - GPU HLT1 project "Allen" is cross-platform and uncoupled for tracking, PV finding & muon ID
 - Real-time feedback for online alignment & calibration
 - HLT2 designed for selecting dedicated physical events with high efficiency and low bandwidth
 - Different levels of persistency is configured to maintain a better balance of bandwidth and physical information.
- Offline:
 - Centralized flexible trimming & skimming framework
 - Selection framework with C++ class as core and Python-based user-friendly API
 - SoA-based data structure for fast event-looping and feature-calculation
 - Centralized analysis production (AP) service with automatic I/O handling and CI test
 - Comprehensive and lightweight data processing tools for offline user analysis for various purposes

Thanks for listening!

Backup

Why no low level trigger?

Low level trigger on E_{τ} from the calorimeter

Low level trigger on muon p_T , B $\rightarrow K^* \mu \mu$

Kalman filter

- Improve Impact Parameter (IP) resolution and reduce ghosts
- Nominal LHCb Kalman filter uses Runge Kutta extrapolator + detailed detector description
- In HLT1, for performance reason two alternatives based on parametrizations:
 - Full detector Parametrized Kalman Filter
 - Velo-Only Kalman Filter (fits only Velo segment, momentum estimate from full track)
 - IP resolution mostly impacted by Velo measurement
 - -> Velo-Only option chosen, which significantly improves throughput

The track matching algorithm

- Two main inputs: SciFi and VELO seeds
- Algorithm approach
 - "Kink" approximation: Velo/SciFi seeds extrapolated to matching position as straight lines
 - Magnetic field and bending in y parametrised with truth simulation to calculate z_match(x,y)

