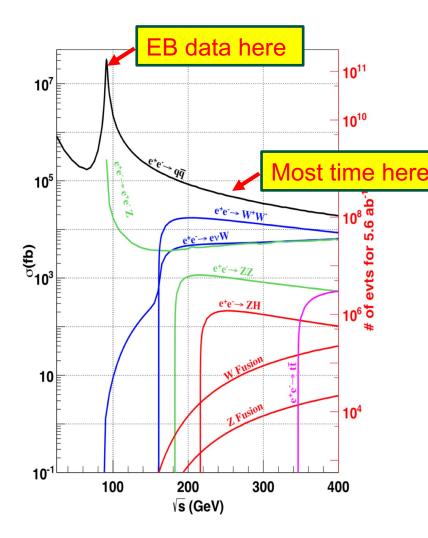
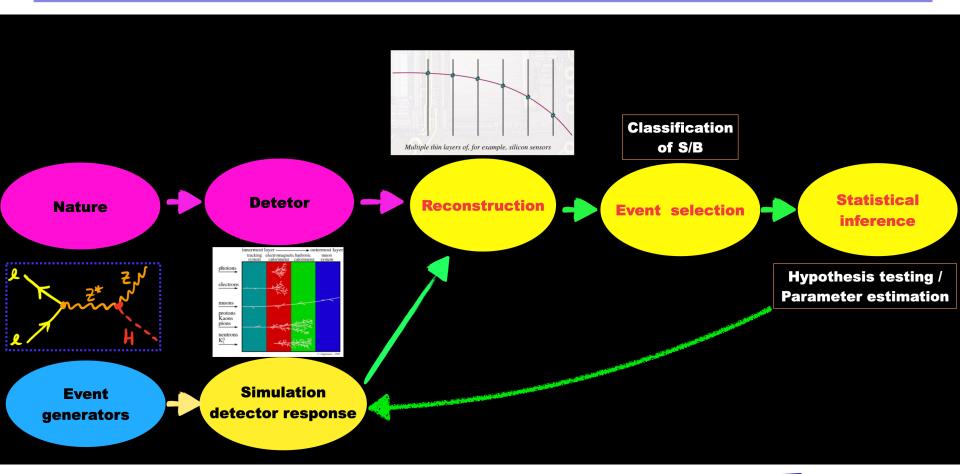

Status of CEPCSW and consideration on computing

Gang Ll (on behalf of the software team) ligang@ihep.ac.cn IHEP 第一届高能物理计算用户研讨会 2024 年5月19-21 日,成都

Outline

- Introduction
- Software
 - Generators
 - Simulation(generator interface)
 - Reconstruction
 - Analysis
- Computing
- Summary

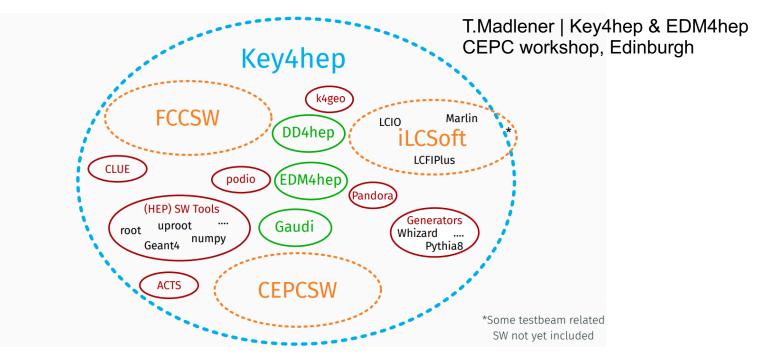

https://github.com/cepc/CEPCSW


Future Electron Positron Colliders

- Various future electron positron collider experiments proposed, take the CEPC as an example
- Aims to cover a wide energy range: H/Z/W factories
- □ To run at \sqrt{s} ~ 240 GeV, just above the ZH threshold for ~4M Higgs;
- □ At the **Z** pole for Tera Z (EB);
- □ Lots of W⁺W⁻ pairs, and possible $t\bar{t}$ pairs.
- Higgs, EW, flavor physics & QCD, BSM physics (eg. dark matter, EW phase transition, SUSY, LLP,)

http://cepc.ihep.ac.cn/

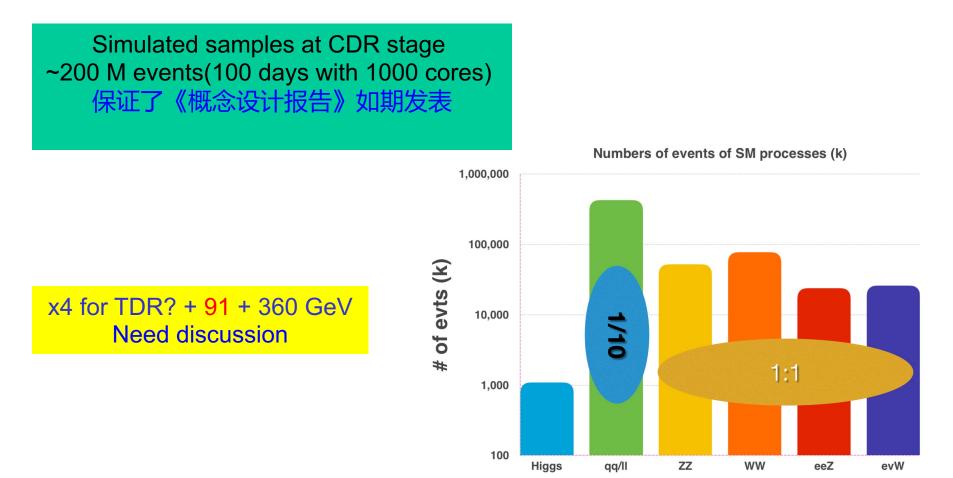
Experiment procedure



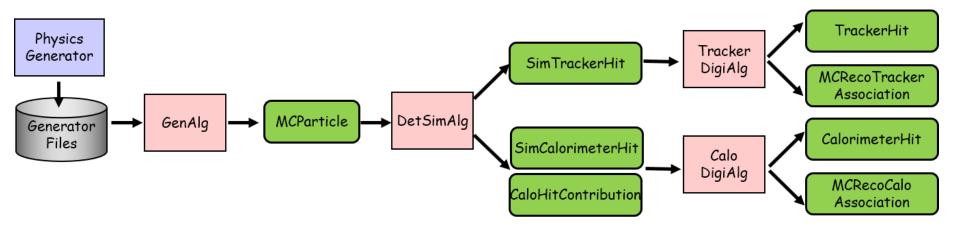
Green loop is the main activity at R&D stage Yellow ellipses related with software

2024/05/20-22

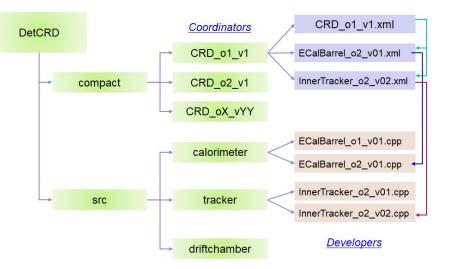
Introduction


- New CEPC software (CEPCSW) prototype was proposed at the Oxford workshop in April 2019.
- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June, 2019.
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments

Generators

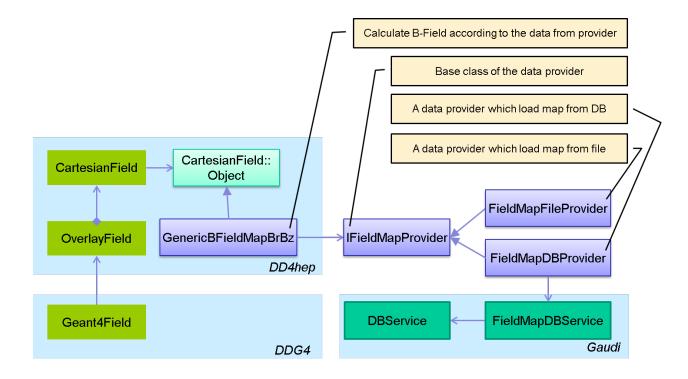

Generators

- The third part software, not need
 - WHIZARD, MagGraph, Pythia(6&8), TwoGam, ...
- Via standard format: HepMC, stdhep, HepEvt, LHE, ...


Simulation

- Complete simulation chain with EDM4hep
 - Physics generator
 - MCParticle
 - Detector Simulation based on Geant4
 - MCParticle (with secondaries), SimTrackerHit, SimCalorimeterHits
 - Digitization
 - TrackerHit, CalorimeterHit

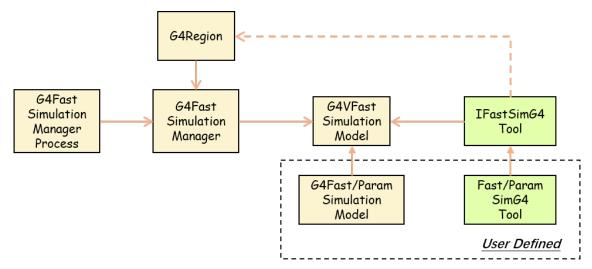
- Geometry management with DD4hep
 - Consists of C++ constructors and XML based compact files
 - <u>https://github.com/cepc/CEPCSW</u> /tree/master/Detector

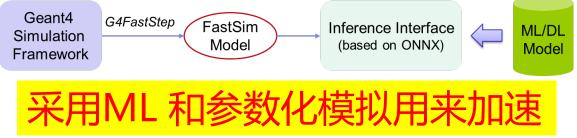

For the CRD detector models, see README by Chengdong: https://github.com/cepc/CEPCSW/tree/master/Detector/DetCRD/compact

CRD detector models - Overview

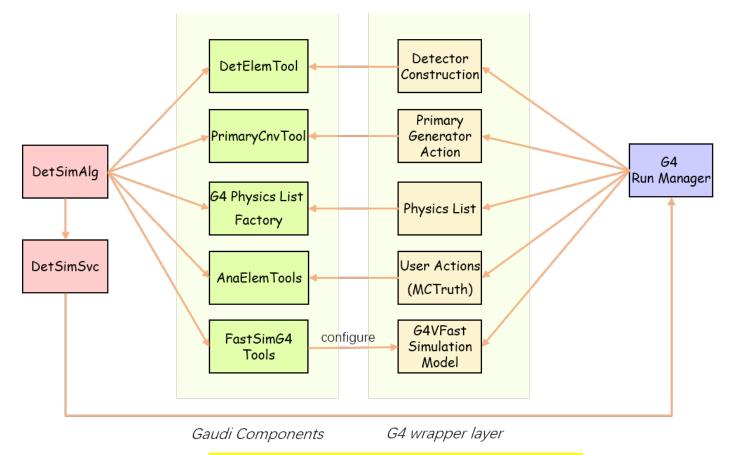
Model	Description	MainTracker	Ecal	Hcal	Status
CRD_o1_v01	coil inside simulation model	SIT+DC+SET	crystal	RPC	developing
CRD_o1_v02	strip SET	SIT+DC+SET	crystal	RPC	developing
CRD_o1_v03	MOST2 vertex	SIT+DC+SET	crystal	RPC	developing
CRD o1 v04	smaller center beam pipe	SIT+DC+SET	crystal	RPC	developina
模拟的探测器输入和版本管理					

The following CRD detector models are available in CEPCSW


- Non-uniform magnetic fields
 - The Br/Bz csv files are provided by magnetic group.



Integration with Fast Simulation

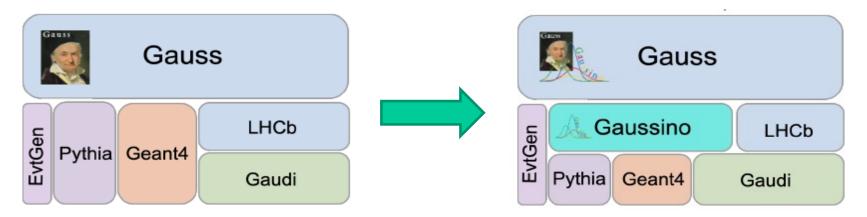

• Region based: when a particle enter a region, fast simulation will be triggered by Geant4.

- Support ML methods via ONNX inference interface.
 - Example: Fast pulse simulation (MLP) in drift chamber done by Wenxing


- Integration with Geant4 and Gaudi
 - A thin layer is developed to manage corresponding Geant4 objects.

Fast simulation with Delphes & k4SimDelphes

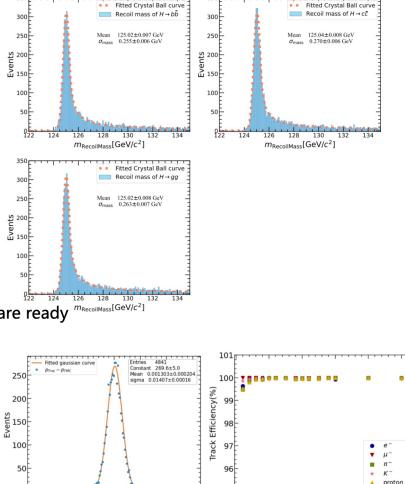
- Delphes is also integrated into Key4hep.
 - EDM4hep is one of the supported output formats.
 - k4SimDelphes offers both standalone executables and the integration with framework.
 - https://github.com/key4hep/k4SimDelphes
 - \$ DelphesSTDHEP_EDM4HEP \
 delphes/cards/delphes_card_CEPC.tcl \
 k4SimDelphes/edm4hep_output_config.tcl \
 delphes_output_edm4hep.root \


Also see Key4hep-doc:

https://key4hep.github.io/key4hep-doc/k4simdelphes/doc/starterkit/k4SimDelphes/Readme.html

Gaussino-based simulation

- CEPC also works together with Key4hep project members and is re-implementing CEPC detector simulation with Gaussino
- Evolution of the simulation framework from LHCb
 - The underlying framework is moving to Gaudi Functional and Gaudi Hive
 - Better support for multi-threading, machine learning, fast simulation methods
 - Gauss-on-Gaussino is a new version of LHCb simulation framework



◆ Gaussino is being added to Key4hep by extracting experiment-independent parts from Gauss

Reconstruction

Tracking

- Physics events:
 - Check the recoil mass of higgs boson
 - $e^+e^- \rightarrow \mu^+\mu^-H, H \rightarrow b\overline{b}, c\overline{c}, gg$
- Updated DC geometry parameters
 - inner radius: 800mm → 600mm
 - Diameter of field wire: $40\mu m \rightarrow 60\mu m$
- DC software be ready and released
 - The compact file of new DC geometery
 - DC_Simple_v01_06.xml
 - CKF algorithm as an external project
 - The codes of simulation and reconstruction are ready
 - good performance and meet requirments for tracker
 - $\sigma_{p_T}/p_T \approx 0.14\%$
 - Track efficiency close to 100%
 - To be released new version before 24.04.25

95^L0

10

20

30

 $p_T[GeV/c]$

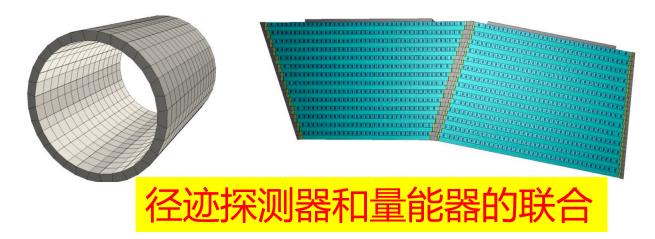
10

0.10 0.15

0-0.15 -0.10 -0.05 0.00 0.05

 $p_{Trec} - p_{TMC}[GeV/c]$

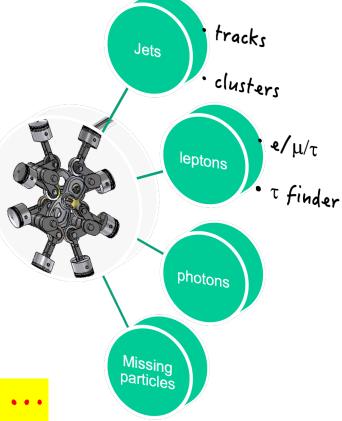
350


Particle identification

- dN/dx in gaseous detectors
 - Goal: To implement a track-level parameterization model.
 - Status:
 - Drift chamber: Working on a parameterization model with machine learning reconstruction. To make the implementation in CEPCSW.
 - Time projection chamber: Working on the pixel-size optimization.
- Time-of-flight
 - Goal: To implement a track-level parameterization model.
 - Status:
 - There is no datatype related to ToF information in EDM4hep. Will create a new datatype in EDM4hep.

Particle Flow calorimeter

- New geometry for Ref-Det in CEPCSW Rel. tdr24.4.0 (By Weizheng)
 - 32-polygon crystal bar ECAL
 - Inner R = 1900mm, outer R = 2200 mm, Z length = 5900 mm.
 - Dead material in the crack region are considered: total width ~ 20 mm. Including: supporting, electronics, cooling.
 - 16-polygon glass tile HCAL with AHCAL symmetric layout.
 - Glass + steel, totally 48 layers, glass tile size 40 * 40 mm.
 - Still updating with mechanical and electronic design.
- Digitization and reconstruction: migrating to the new geometry and validating the performance.


Missing parts

- Unified PID function and interface
- Secondary vertex finding
- Jet clustering
- ✤ Jet flavor tagging: interface to ML algorithm

Analysis

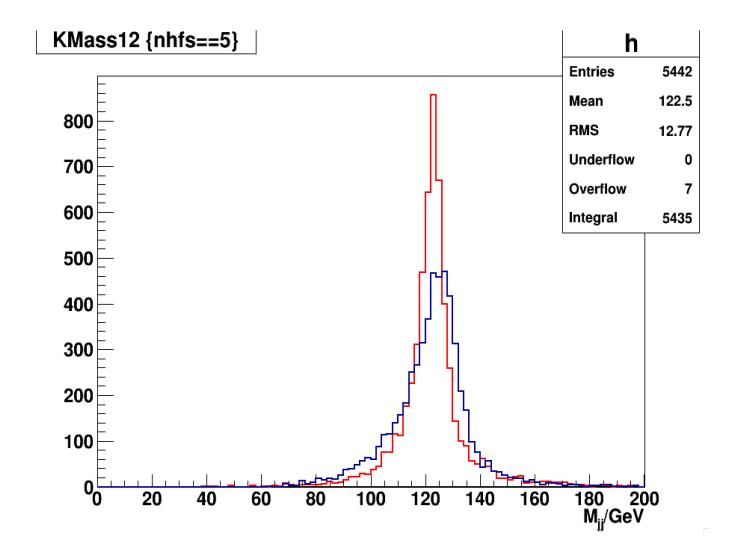
Model of data analysis

Feed all types of particle lists to the combination engine for further processing

ee+X, μμ+X, jj+ee, jj+μμ…

Abstraction

- ♦ Class FSParticle $\rightarrow \text{ particles & lists}$
- ♦ Class FSinfo $\rightarrow all kinds of combination$
- ♦ Class NTupleHelper \rightarrow Ntuple service
- ♦ Class MCTruthHelper \rightarrow MC truth service
- ♦ Class FSCut → simple cuts

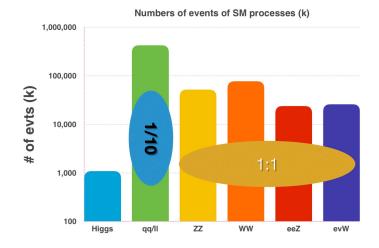

Example ee $\rightarrow \mu + \mu -$ Higgs(anything)

Tell the FSClasser processor what you want jet γ $\tau+$ $\tau \mu+$ $\mu-$ e+ e-INCO 00011000

8 digits: the numbers of particles your want

Pre-selection cuts, kinematic fit, multi-entry, multiple channels, sufficient information saved, ...

Kinematic fit


Release plan

- Release tdr24.3 (March 2024)
- Release tdr24.4.0 released
 - Background mixing
 - Silicon detector reconstruction
 - TPC reconstruction
 - Drift Chamber reconstruction
- Release tdr24.5 (May 2024)
 - PID simulation and reconstruction
 - Muon software
- Release tdr24.6 (June 2024)
 - Particle Flow Calorimeter reconstruction

Computing

- Higgs signal
 - Selected backgrounds
 - O(10⁷)
- ttbar signals
 - Selected backgrounds
 - O(10⁶)
- ✤ Z pole (Tera Z: O(10¹²))
 - Need more discussion
 - Only some selected signal
 - And a "small" background sample O(10⁷)

CDRx4 for TDR? + 91GeV + 360 GeV

工作的常态

Summary

- CEPC software is integrated with Key4hep.
 - Adopting a common software makes it easy to share between different experiments, such as k4SimDelphes could be used.
- ✤ A complete simulation chain is available in CEPCSW.
 - It is already used for detector software development.
- Reconstruction software under development
 - A complete version will be released on schedule
- Computing for detector study going smoothly
- Computing of mass production for TDR analysis challenging