考核汇报

导师: 张杰

学生: 马雪珂

HEPS-BPIX40

双阈值像素阵列探测器是一种用于图像获取和传感的器件,具有**双个阈值电压**(Vtha)的像素阵列。**双阈值设计**实现不同像素的灵敏度和响应范围的差异化,可以提高**动态范围**,还具有**较低的噪声水平、高空间分辨率和快速的响应速度**。

技术参数

HEPS-BPIX40	单模块	6M
有效面积:长x宽/mm2	80.64 x 35.84	403.2 x 286.72
像素大小/um2	140 x 140	140 x 140
总像素数量	576 x 256 = 147,456	2,880 x 2,048 = 5,898,240
间隙宽度, 水平/垂直(像素)	-/-	24/15
非灵敏区/%	-	9.48
最大帧频/Hz	Up to 2K	1K
计数器深度/bit	14	14
阈值能量/keV	2.7-18	2.7-18
尺寸 (WHD) /mm3	?	?
重量/kg	?	?
功耗/w	?	?

二维X射线探测器 混合像素探测器 40个探测模块 6M个像素阵列

每个像素提供2个阈值,同时对两个能量的X射线进行分别测量。

X射线晶体学 小角散射 生物学等领域

刻度校准

双阈值像素阵列探测器有着约6M个像素阵列、像素尺寸小至140um*140um以及不同像素的响应差异对刻度来说都是极大的挑战。

组成:

- 1.每个像素后面都有一个独立的单 元格,用于处理信号;
- 2.读出芯片的像素单元由<mark>模拟部分</mark> 和数字部分组成;
- 3.每个像素的阈值由所有像素的8位 全局DAC及其自己的5位本地DAC 来设置。

图1 刻度校准总体框图

刻度进展: 1.在光上验证电子学刻度的效果

2.在光上刻度

3.测量能量与LDAC对应的关系、验证增益数值的实际对应关系

4.正式刻度

5.刻度后验证

一: 验证电子学刻度是否适用在光上

实验思路: 将电子学生成的刻度表应用在光上, 观察成像是否良好

图2 X光管成像

图3 光下成像

观察图3可知,电子学刻度生成的刻度表在光下使用时有很多 竖条,成像计数非常不均匀。因此电子学刻度的幅度和光的 能量不对应。

二: 在光下对模块进行刻度

实验思路: 固定阈值一 (GDAC1=88) 、阈值二 (GDAC2=300) , 扫描LDAC(1~32) , 生成刻度表在光下使用

分析在光下刻度后的成像数据,图4中的异常点主要有三类:黑点、计数较低的点和计数非常高的点

计数=0	pixel	36875	46491	51195	61944	65834	96198	144257	total: 7
	count	0	0	0	0	0	0	0	
	Idac	8	8	8	8	8	8	8	
000 clear 0000 -	1	SCurve曲线 ,	368	375	0.5 - Clear 0	1	SCurve曲线	4649	91
000 - \ 0	5 10 3.688e+04	15 stop	0 25 3.688e+04	30	-0.5 - 1 5 35 start	10 4.649e+04	15 2 stop	0 25 4.649e+04	30

二:在光下对模块进行刻度(调整程序后在光下对模块进行刻度)

实验思路: 调整程序尽量避免第二种情况的产生, 生成刻度表在光下使用

图5 在光下刻度后的成像

分析在光下刻度后的成像数据,计数较低的点明显有减少

计数=0	pixel	36875	46491	51195	61944	65834	73601	96198	total: 7
	count	0	0	0	0	0	0	0	
	ldac	8	8	8	8	8	8	8	
000 clear	1	SCurve曲线	368	375	0.5 - 0 -		SCurve曲线	464	91
000 - 000 start	5 10 3.688e+04	15 stop	20 25 3.688e+04	30	-0.5 - -1 0 start	5 10 4.649e+04	15 stop	20 25 4.649e+04	30

三: 测量能量与阈值对应的关系、测量增益数值的实际对应关系

实验思路: 测量噪声及三个能量点 (Fe(6405eV)、Cu(8046eV)、Ge(9.8keV)、固定阈值一 (GDAC1=88)、阈值二 (GDAC2=300),扫描LDAC(1~32)

	LDAC	GDAC	Threshold/mv
Noise	5. 50338406	88	162. 8406087
Fe (6. 4keV)	12. 42471653	88	245. 8965984
Cu (8keV)	15. 79266357	88	286. 3119628
Ge (9. 8keV)	22. 50644938	80	358. 07739256

能量和阈值之间的关系。它是线性的,约2.1 LDAC LSB响应1keV。最小可探测的阈值约为4.02 keV。

实验思路: 固定能量、扫描三个增益的Scurve曲线、比较三个数据的噪声宽度和平顶区宽度

通过分析所有像素的Scurve曲线可得:

	Gain0	Gain1	Gain2
噪声能量宽度 (keV)	0.23	0.46	0.78
平顶区能量宽 度(keV)	3.57	5.53	7.37

四:正式刻度

具体扫描细节:

1.测偏置

2.增益2、四个能量点 ∠ 8keV、10keV、12keV、14keV:

module	energy
115	Cu, Ge
9112	Cu, Ge
121	Cu, Ge
126	Cu, Ge
1027	Cu, Ge
221-3	Cu, Ge
34-2	Cu, Ge
34-3	Cu, Ge

问题一: 五个模块的g300g70、g300g100的数据出 现了同样的问题

图三 g300g70、g300g100阈值二的Scurve曲线

阈值二的GDAC被阈值一覆盖了

12个芯片在不同偏置下的输出电压

问题二: 扫描时丢数

(Cu)8kev≈ 70gdac+13ldac

(Ge)10kev≈ 100gdac+13ldac 12kev≈ 130gdac+13ldac

验证: 用matlab运行时并未丢数

结论: 暂时先用matlab取数

五: 刻度后验证

刻度前S-curve曲线图和阈值分布直方图

刻度后S-curve曲线图和阈值分布直方图

刻度后最小阈值能量统计

刻度后用15keV光管照射的豌豆和秋葵成像

THANK YOU!