考核汇报

具有世界最高光谱亮度

国际先进性

Allan

第四代同步辐射光源

十三五规划

7

双阈值像素阵列探测器是一种用于图像获取和传感的器件,具有**双个阈值电压**(Vtha)的像素阵列。**双阈值设计**实现不同像素的灵敏度和响应范围的差异化,可以提高**动态范围**,还具有**较低的噪声水平、高空间分辨率**和快速的响应速度。

技术参数

HEPS-BPIX40	单模块	6M
有效面积:长x宽/mm2	80.64 x 35.84	403.2 x 286.72
像素大小/um2	140 x 140	140 x 140
总像素数量	576 x 256 = 147,456	2,880 x 2,048 = 5,898,240
间隙宽度, 水平/垂直(像素)	-/-	24/15
非灵敏区/%	-	9.48
最大帧频/Hz	Up to 2K	1К
计数器深度/bit	14	14
阈值能量/keV	2.7-18	2.7-18
尺寸 (WHD) /mm3	?	?
重量/kg	?	?
功耗/w	?	?

亮点

二维X射线探测器 混合像素探测器 40个探测模块 6M个像素阵列

每个像素提供2个阈值,同时对两个能 量的X射线进行分别测量。

X射线晶体学 小角散射 生物学等领域

双阈值像素阵列探测器有着约6M个像素阵列、像素尺寸小至140um*140um以及不同像素的响应差异对刻度来说都是极大的挑战。

图1 刻度校准总体框图

组成: 1.每个像素后面都有一个独立的单 元格,用于处理信号; 2.读出芯片的像素单元由模拟部分 和数字部分组成; 3.每个像素的阈值由所有像素的8位 全局DAC及其自己的5位本地DAC 来设置。

刻度进展: 1.在光上验证电子学刻度的效果

- 2.在光上刻度
- 3.测量能量与LDAC对应的关系、验证增益数值的实际对应关系
- 4.正式刻度
- 5.刻度后验证

一: 验证电子学刻度是否适用在光上

实验思路:将电子学生成的刻度表应用在光上,观察成像是否良好

图2 X光管成像

图3光下成像

观察图3可知,电子学刻度生成的刻度表在光下使用时有很多 竖条,成像计数非常不均匀。因此电子学刻度的幅度和光的 能量不对应。

二: 在光下对模块进行刻度

实验思路:固定阈值一(GDAC1=88)、阈值二(GDAC2=300),扫描LDAC(1~32), 生成刻度表在光下使用

0 <count<100 0</count<100 	pixel	1	23675	36894	46491	48242	49220	49223	total: 21
	count	10	833	600	0	387	592	540	
	ldac	8	5	5	8	5	4	4	
15000 10000 ↓ x 5 5000 ↓ 4924 ↓ 4924									
0 5 start 2.3	10 15 368e+04	20 stop 2	25 30 .368e+04	35					

计数 >8000	pixel	36973	46286	46438	46720	49269	60438	60478	total: 23
	count	8618	10730	13890	13757	11810	10463	13604	
	ldac	6	6	7	5	4	4	4	
14000	λ	SCurve曲组	ŝ	1	14000		SCurve	曲线	1
12000 - 10000 - 8000 - 6000 -	X 6 Y 4704		3	6973	- 12000 - 10000 - - 8000 - - 6000 -	X 6 Y 5770			46286
4000	5 10	15	20 25	30	- 4000 - 2000 - 35 0 -	5 10	15	20 25	30
start	3.697e+04	stop	3 697e+04		start	4.629e+04	l si	op 4 629e-	+04

分析在光下刻度后的成像数据,图4中的异常点主要有 三类:黑点、计数较低的点和计数非常高的点

二: 在光下对模块进行刻度 (调整程序后在光下对模块进行刻度)

实验思路:调整程序尽量避免第二种情况的产生,生成刻度表在光下使用

图5 在光下刻度后的成像

分析在光下刻度后的成像数据,计数较低的点明显有减少

三: 测量能量与阈值对应的关系、测量增益数值的实际对应关系

实验思路:测量噪声及三个能量点 (Fe(6405eV)、Cu(8046eV)、 Ge(9.8keV) 、固定阈值一 (GDAC1=88) 、阈值二 (GDAC2=300) , 扫描LDAC(1~32)

	LDAC	GDAC	Threshold/mv
Noise	5. 50338406	88	162.8406087
Fe(6.4keV)	12. 42471653	88	245. 8965984
Cu(8keV)	15.79266357	88	286. 3119628
Ge(9.8keV)	22.50644938	80	358.07739256

能量和阈值之间的关系。它是线性的,约2.1 LDAC LSB响应1keV。最小可探测的阈值约为4.02 keV。

实验思路:固定能量、扫描三个增益的Scurve曲线、比较三个数据的噪声宽度和平顶区宽度

通过分析所有像素的Scurve曲线可得:

	Gain0	Gain1	Gain2
噪声能量宽度 (keV)	0.23	0.46	0.78
平顶区能量宽 度(keV)	3.57	5.53	7.37

四:正式刻度

具体扫描细节:

(Ge)10kev≈ 100gdac+13ldac 12kev≈ 130gdac+13ldac 12kev≈ 130gdac+13ldac 14kev≈ 160gdac+13ldac 14kev≈ 160gdac+13ldac
2.增益2、四个能量点
8keV、10keV、12keV、14keV:

module	energy
115	Cu, Ge
9112	Cu, Ge
121	Cu, Ge
126	Cu, Ge
1027	Cu, Ge
221-3	Cu, Ge
34-2	Cu, Ge
34-3	Cu, Ge

问题一:五个模块的g300g70、g300g100的数据出现了同样的问题

问题二:扫描时丢数

(Cu)8kev≈ 70gdac+13ldac

- 验证:用matlab运行时并未丢数
- 结论:暂时先用matlab取数

12个芯片在不同偏置下的输出电压

五: 刻度后验证

刻度前S-curve曲线图和阈值分布直方图

刻度后最小阈值能量统计

刻度后用15keV光管照射的豌豆和秋葵成像

刻度后S-curve曲线图和阈值分布直方图

THANK YOU!