PID cut optimization and automation

Xin Xia; Yuzhi Che xiax@ihep.ac.cn

- > Try to find an automatic PID method
- ➤ Variables optimization
- MC PID performance quantification

Raw PID method

- ≻ Method
 - ≻ Use two variables:
 - Fractal dimension
 - Average hit energy
 - > Artificial cut
- ≻ Advantage:
 - ► Easy
 - \succ clearly distinguish different components in the beam
- ➢ Disadvantage
 - ➤ Time-consuming
 - \succ with a certain degree of arbitrariness
 - > did not achieve the optimal level of PID performance for this method.

Ð

0.8

0.2

Misjudgment rate minimization

- Step 1: prepare MC sample
 - 1:1 (100k pion + 100k electron)
 - ratio of e and pi in real data (obtained by Miunit fit)
- Step 2: define misjudgment rate
 - Linear cut: $FD = k * \langle E_{\text{Hit}} \rangle + b$
 - Mis-id-num = (pi_all pi_select) + (e_all e_select) = Func (k, b)
- Step 3: minimize misjudgment rate
 - Minuit (fail)
 - Brute force
 - Other method

Brute force

> Parameter

- For k: range (-0.6, -0.005), number = 100
- For b: range (1, 3), number = 100
- 100 ×100 array
- \succ (k, b) \rightarrow Mis-id-num
- > Result = Min(Mis-id-num) → k, b
- ➤ Time: ~ 10s

MC sample 1:1 mixture + Brute force

-- Results

➤ For pion:

- ➢ Efficiency > 97%; Purity > 99%.
- Efficiency can be improved with larger energy and enters a plateau region when the energy reaches more than 40 GeV.
- > Purity is relatively stable.
- \succ For electron:
 - ➢ Efficiency > 99%; Purity > 97%.
- Pion efficiency behaves similarly to electron purity, and electron efficiency behaves similarly to pion purity.
- > PID performance improves with energy.

MC sample 1:1 mixture + Brute force

-- FD-<E_{Hit}> plots

MC/Data discrepancy, so the cut for MC is not suit for Data. Especially at low energy points.

MC sample 1 : 1 mixture + Brute force

-- FD-<E_{Hit}> plots

2024/4/25

MC/Data

MC sample 1:1 mixture + Brute force

-- cut

The cut that varies with energy.

Comparison between Brute force and Artificial cut

The performance of Brute force method is $\sim 1\%$ better than Artificial cut.

MC sample real ratio mixture + Brute force

-- Ratio estimate

- > Data: combine all the runs at the same energy
- Method: single variable + Minuit
 - Here we compared five different variables: NHits, RMS R, RMS Z, <E_{Hit}>, FD
- > Difference in ~ 5%.
- For RMS Z, Best consistency between MC and data. So we choose the fit result obtained by using RMS Z.

40000

30000

20000

10000

MC/Dat

200

400

600

1000

NHits

MC sample real ratio mixture + Brute force

-- Results

\succ For pion:

- ➢ Efficiency > 96%; Purity > 98%.
- Efficiency can be improved with larger energy and enters a plateau region when the energy reaches more than 40 GeV.
 Purity is relatively stable.

 \succ For electron:

- ➢ Efficiency > 98%; Purity > 96%.
- As the energy increases, the purity decreases.
- > Efficiency is relatively stable.

MC sample real ratio mixture + Brute force

-- FD-<E_{Hit}> plots

Performance same as 1 : 1 mixture.

2024/4/25

xiax@ihep.ac.cn

Comparison between 1:1 mixture and real ratio mixture

-- Performance

- Purity: in 3%
- ➤ Efficiency* Purity: in 4%

Comparison between 1:1 mixture and real ratio mixture

-- Cut

The cut that varies with energy.

Variables optimization and selection

Separation power:

<E_{Hit}> > NHits > RMS r > shower density > FD > Event energy

$<\!\!E_{Hit} \!\!> + RMS \, r + Brute \, Force$

-- plots

PID performance looks good.

$<E_{Hit} > + RMS r + Brute Force$

-- performance

PID performance worse than $FD + \langle E_{Hit} \rangle$.

$<E_{Hit} > + FD 3D + Brute Force$

-- performance

 \succ A method for automatic PID cut has been developed.

- FD 2D + $\langle E_{Hit} \rangle$ + Brute froce
- Efficiency and purity better than 97% (1:1 mixture) / 96% (real ratio mixture)
- Compare the separation power of different variables
- > Try another PID variable
 - > RMS R, but the performance is worse than FD 2D + <E_{Hit}>.
 - > FD 3D, performance is similar with FD 2D

Thanks for your listening!

Xin Xia xiax@ihep.ac.cn