CP violation in b-meson decays (a) LHCb

Shanzhen Chen IHEP

CP violation *@* **LHCb**

- CP violation:
 - One of the Sakharov conditions for the generation of a matter-antimatter asymmetry in the early Universe
 - Arises from the complex phase in the CKM mixing matrix.

$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• The main purpose of LHCb is to study CP violation in b-mesons

LHCb Lol, 1995

Conclusions

- LHC provides a unique opportunity to study CP violation in B-meson decays with very high statistics and LHC-B can fully exploit this with well controlled systematics.
- 2) Dedicated B experiment with a forward spectrometer, LHC-B, can provide a flexible, robust and efficient trigger.
- Open geometry allows easy access to the detector for adjusting the spectrometer to the machine condition.
- 4) With the particle identification capability, excellent mass and decay time resolutions and many B_d and B_s produced, LHC-B can study CP violation channels measuring α , β and γ as well as B_s oscillations to very large value of $x_s > 50$ with small systematics.
- 5) The spectrometer can study other physics such as charm and tau decays as well as a wide variety of forward physics at the same time.
- 6) Low required luminosity of 1.5∞10³² allows LHC-B to provide physics results from the beginning of the LHC run.
- Constant Constant

CP violation in b-sector

V_{cd} V_{cs} V_{cb}

 $\begin{pmatrix} V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

• Of the 6 orthogonality relations the CKM matrix satisfies

$$V_{ij}V_{jk}^* = \delta_{ik} \qquad \qquad V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• the "bd" term is central in many B-meson decays:

CKM parameter measurements with B decays

• The CKM matrix in terms of the Wolfenstein parameters

The standard techniques for the angles $\beta : B^0 \text{ mixing (phase } \beta) (+ \text{ single } b \rightarrow c \text{ decay})$ $\alpha : B^0 \text{ mixing (phase } \beta) + \text{ single } b \rightarrow u \text{ decay (phase } \gamma)$ $\gamma : b \rightarrow u \text{ (phase } \gamma) \text{ (interference with } b \rightarrow c)$ $\beta_s : B_s^0 \text{ mixing (phase } \beta_s) (+ \text{ single } b \rightarrow c \text{ decay})$

Measurement of CP violation in $B0 \rightarrow \psi(\rightarrow \ell + \ell -)KOS(\rightarrow \pi + \pi -)$ decays, PHYS. REV. LETT. 132 (2024) 021801

- Golden measurement channel $B_d \rightarrow J/\psi K_S$
- tree dominated $b \rightarrow \bar{c}cs$ transition
- Interference between decays with and without mixing leads to CP asymmetry $A_{CP}(t) = -\eta_f \sin 2\beta \sin(\Delta m_d t)$
- Measurement primary goal of the b-factories

PRL 108 (2012) 171802

- LHCb Run 2 (6 fb⁻¹) results using $B_d \rightarrow J/\psi K_S$ (both muons and electrons) and $B_d \rightarrow \psi(2S)K_S$
- Flavor-tagged time-dependent analysis to determine sin 2β

$sin 2\beta$

$$\begin{split} S^{\text{Run } 2}_{J/\psi (\to \mu^+ \mu^-) K^0_{\text{S}}} &= 0.714 \pm 0.015 \, (\text{stat}) \pm 0.007 \, (\text{syst}) \\ C^{\text{Run } 2}_{J/\psi (\to \mu^+ \mu^-) K^0_{\text{S}}} &= 0.013 \pm 0.014 \, (\text{stat}) \pm 0.003 \, (\text{syst}) \\ S^{\text{Run } 2}_{\psi (2S) K^0_{\text{S}}} &= 0.647 \pm 0.053 \, (\text{stat}) \pm 0.018 \, (\text{syst}) \\ C^{\text{Run } 2}_{\psi (2S) K^0_{\text{S}}} &= -0.083 \pm 0.048 \, (\text{stat}) \pm 0.005 \, (\text{syst}) \\ S^{\text{Run } 2}_{J/\psi (\to e^+ e^-) K^0_{\text{S}}} &= 0.752 \pm 0.037 \, (\text{stat}) \pm 0.0084 \, (\text{syst}) \\ C^{\text{Run } 2}_{J/\psi (\to e^+ e^-) K^0_{\text{S}}} &= 0.046 \pm 0.034 \, (\text{stat}) \pm 0.008 \, (\text{syst}) \end{split}$$

Run 1+2 combination all modes

$$egin{aligned} S^{ ext{Run 1+2}}_{\psi \mathcal{K}^0_{ ext{S}}} &= 0.723 \pm 0.014 \, (ext{stat+syst}) \ C^{ ext{Run 1+2}}_{\psi \mathcal{K}^0_{ ext{S}}} &= 0.007 \pm 0.012 \, (ext{stat+syst}) \end{aligned}$$

- LHCb Run 2 result most precise to date
- Still dominated by statistical uncertainty

sin(2β	$) \equiv s$	$\sin(2\phi_1)$
BaBar PRD 79 (2009) 072009	۲	0.69 ± 0.03 ± 0.01
BaBar χ _{ο0} Κ _S PRD 80 (2009) 112001		0.69 ± 0.52 ± 0.04 ± 0.07
BaBar J/ψ (hadronic) K _S PRD 69 (2004) 052001		1.56 ± 0.42 ± 0.21
Belle PRL 108 (2012) 171802	H	$0.67 \pm 0.02 \pm 0.01$
ALEPH PLB 492, 259 (2000)		★ 0.84 ^{+0.82} _{-1.04} ± 0.16
OPAL EPJ C5, 379 (1998)		3.20 ^{+1.80} ± 0.50
CDF PRD 61, 072005 (2000)		★ 0.79 ^{+0.41}
LHCb PRL 132 (2024) 021801		0.724 ± 0.014
Belle5S PRL 108 (2012) 171801	*	0.57 ± 0.58 ± 0.06
Average HFLAV		0.709 ± 0.011
-2 -1	0	1 2 3

Source	$\sigma(S)$	$\sigma(C)$
Fitter validation	0.0004	0.0006
Decay-time bias model	0.0007	0.0013
FT $\Delta \epsilon_{\text{tag}}$ portability	0.0014	0.0017
FT calibration portability	0.0053	0.0001
$\Delta\Gamma_d$ uncertainty	0.0055	0.0017

$$\boldsymbol{\phi}_{s}, \boldsymbol{\phi}_{s}^{s\overline{s}s}$$

Improved measurement of CP violation parameters in B0s \rightarrow J/ ψ K+K- decays in the vicinity of the ϕ (1020) resonance, PHYS. REV. LETT. 132 (2024) 051802

Precision Measurement of CP Violation in the Penguin-Mediated Decay B0s \rightarrow $\phi\phi$, PHYS. REV. LETT. 131 (2023) 171802

B_s mixing

• Interference of decays with/without mixing gives measurable phase

- Observable phase $\phi_s = -2\beta_s = \Phi_M 2\Phi_D$
- In the Standard Model expected to be small, $\phi_s = -0.0368$ radians
- Larger values possible in models of New Physics
- Golden channel: $B_s \rightarrow J/\psi \phi$

ϕ_s from $B_s \to J/\psi KK$

- Measure ϕ_s and $\Delta \Gamma_s$ using the decay Bs $\rightarrow J/\psi K^+K^-$ with M(K⁺K⁻) in the vicinity of $\phi(1020)$ meson
- Specific background from B^0 and Λ_b suppressed with mass and PID requirements; remaining background from Λ_b statistically subtracted
- Entire run-2 dataset, 48 sub-samples
- A mixture of CP-even & CP-odd components \rightarrow angular analysis
- Fits for decay time and angular distributions

ϕ_s from $B_s \to J/\psi KK$

Parameter	Values		
$\phi_s \; [\mathrm{rad}]$	$-0.039 \pm 0.022 \pm 0.006$		
$ \lambda $	$1.001 \ \pm 0.011 \ \pm 0.005$		
$\Gamma_s - \Gamma_d \; [\mathrm{ps}^{-1}]$	$-0.0056 \begin{array}{c} +0.0013 \\ -0.0015 \end{array} \pm 0.0014$		
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	$0.0845 \pm 0.0044 \pm 0.0024$		
$\Delta m_s \; [\mathrm{ps}^{-1}]$	$17.743 \pm 0.033 \pm 0.009$		
$ A_{\perp} ^2$	$0.2463 \pm 0.0023 \pm 0.0024$		
$ A_0 ^2$	$0.5179 \pm 0.0017 \pm 0.0032$		
$\delta_{\perp} - \delta_0 [{ m rad}]$	$2.903 \ {}^{+0.075}_{-0.074} \ \pm 0.048$		
$\delta_{\parallel} - \delta_0 [{ m rad}]$	$3.146 \pm 0.061 \pm 0.052$		
Combined with run 1			

 $\phi_s = -0.044 \pm 0.020$ rad $|\lambda| = 0.990 \pm 0.010$

Combined over $b \rightarrow c\bar{c}s$ transitions

 $\phi_s = -0.031 \pm 0.018$ rad

Most precise measurement to date

Consistent with SM

- The phase ϕ_s measured independently for each polarization of the K⁺K⁻ system
- No evidence for polarization dependence

ϕ_s from $B_s \to J/\psi KK$

• Tension in measurements of $\Delta\Gamma_s$ using $B_s \rightarrow J/\psi$ KK decays by ATLAS, CMS and LHCb, large scale factor on the uncertainty for HFLAV average

$\phi_s^{s\overline{s}s}$ from $B_s \to \phi\phi$

- CPV in FCNC via penguin dominated $b \rightarrow sss$ transitions
- NP contributes to mixing and penguin processes
- Very similar analysis strategy as $B_s \to J/\psi \; KK$
- In $B_s \rightarrow \phi \phi$, CPV may be polarization dependent
- Time-dependent flavor-tagged angular analysis
- Entire run 2 dataset

Parameter	Result
$\phi_s^{s\overline{s}s}$ [rad]	$-0.042 \pm 0.075 \pm 0.009$
$ \lambda $	$1.004 \pm 0.030 \pm 0.009$
$ A_0 ^2$	$0.384 \pm 0.007 \pm 0.003$
$\left A_{\perp}\right ^2$	$0.310 \pm 0.006 \pm 0.003$
$\delta_{\parallel} - \delta_0 \ [\ { m rad} \]$	$2.463 \pm 0.029 \pm 0.009$
$\delta_{\perp} - \delta_0$ [rad]	$2.769 \pm 0.105 \pm 0.011$

 ϕ_s^{sss} from $B_s \rightarrow \phi \phi$

• Combined with Run 1

 $\phi_s^{s\overline{s}s} = -0.074 \pm 0.069 \,\mathrm{rad}$ $|\lambda| = 1.009 \pm 0.030$

• Polarization dependent results (statistical uncertainty only):

$\phi_{s,0}= -$	$-0.18 \pm 0.09 \text{ rad}$,	$ \lambda_0 = 1.02 \pm 0.17 \; ,$
$\phi_{s,\parallel}-\phi_{s,0}=$	$0.12\pm0.09~\mathrm{rad}$,	$ \lambda_\perp/\lambda_0 = 0.97 \pm 0.22 \; ,$
$\phi_{s,\perp} - \phi_{s,0} =$	$0.17\pm0.09~\mathrm{rad}$,	$ \lambda_\parallel/\lambda_0 =0.78\pm 0.21\;,$

- Most precise measurement of time-dependent CP asymmetry in Bs $\rightarrow \phi \phi$ and in any penguin-dominated B-decay
- Consistent with SM
- Polarization-dependent CPV parameters measured for the first time, no significant difference between three polarizations

γ (See Xiaokang's talk)

Study of CPV in B(s) \rightarrow DK*(892)0 decays with D-> Kn(nn), nn(nn), and KK final states, JHEP 05 (2024) 025

A model-independent measurement of the CKM angle γ in partially reconstructed $B^{\pm} \rightarrow D^{*}h^{\pm}$ decays with $D \rightarrow K0Sh+h$ - (h= π ,K), JHEP 02 (2024) 118 Measurement of the CKM angle γ using the $B^{\pm} \rightarrow D^{*}h^{\pm}$ channels, JHEP 12 (2023) 013 Measurement of the CKM angle γ in the B0 \rightarrow DK*0 channel using self-conjugate $D \rightarrow K0Sh+h$ - decays, EPJC 84 (2024)206

Summary

- New precise measurements of CKM angles from LHCb
- All available measurements of CPV observables, including amplitude and phase measurements are so far consistent with the Standard Model
- A lot more to come in the next decades from LHCb Upgrade(s), we expect to be more precise

Future prospects

Upgrade I -

LHCb Current -

Upgrade II-

Max Luminosity [10³³/cm²] • LHCb expect ~300fb⁻¹ in run-6 LS2 LS3 LS I LS4 S S 8 4 . . . 2 2010 2015 2020 2025 2030 2035 Observable Current LHCb LHCb 2025 Belle II Upgrade II **EW** Penguins $\overline{R_K \ (1 < q^2 < 6 \,\mathrm{GeV}^2 c^4)}$ 0.1 [274]0.0360.0250.007 R_{K^*} $(1 < q^2 < 6 \,\mathrm{GeV}^2 c^4)$ 0.1 275 0.0310.0320.008 $R_{\phi}, R_{pK}, R_{\pi}$ 0.08, 0.06, 0.180.02, 0.02, 0.05CKM tests $\binom{+17}{-22}^{\circ}$ $\binom{+5.0}{-5.8}^{\circ}$ [136] γ , with $B^0_s \to D^+_s K^ 4^{\circ}$ 10 167 γ , all modes 1.5° 1.5° 0.35° $\sin 2\beta$, with $B^0 \to J/\psi K_s^0$ 0.04 606 Now 0.014 0.011 0.0050.00349 mrNow 20 mrad 14 mrad ϕ_s , with $B_s^0 \to J/\psi\phi$ 4 mrad ϕ_s , with $B_s^0 \to D_s^+ D_s^-$ 170 mrad 49 35 mrad 9 mrad $\phi_s^{s,s}$, with $B_s^0 \to \phi \phi$ $a_{\rm sl}^s$ 154 mr 15 11 mrad 33×10^{-4} [211] 10×10^{-4} 3×10^{-4} _ $|V_{ub}|/|V_{cb}|$ 6% 201 3%1%1%

200

100

-50

Prospects on CKM unitarity triangle

Prospect: 300fb⁻¹