

LHCb实验上的奇特强子态的研究

Liming Zhang(张黎明) (清华大学)

第4届LHCb前沿物理研讨会 Jul 27 – 31, 2024

Introduction

- QCD describing strong interaction between quarks and gluons is not well understood due to its non-perturbative nature at low energy scale
- Hadron spectroscopy provides opportunities to test QCD and its effective models
 - e.g. lattice QCD, diquark model, potential model ...
- Exotic hadrons provide unique probe to QCD
 - Predicted in quark model
 - Recent results show strong evidence for their existence

mesonic molecule ?

tetraquark ?

pentaquark ?

hybrid?

EXOTIC

STANDARD

Advantages for spectroscopy study at LHCb

- Large statistics in LHCb acceptance
 ~ 6 × 10⁴ bb̄ per second @ 13 TeV
 ~ 20 × yield for cc̄ compared to bb̄
- All kinds of hadrons can be produced
 - $\Box \quad \Lambda_b, \Xi_b, \Sigma_b, \Omega_b, B_s \ldots$
- Dedicated design of detector
 - Powerful particle identification
 - RICH $K \pi$ separation: $\epsilon(K \to K) \sim 95\%$ mis-ID $\epsilon(\pi \to K) \sim 5\%$ Muon ID: $\epsilon(\mu \to \mu) \sim 97\%$ mis-ID $\epsilon(\pi \to \mu) \sim 1 3\%$
 - Good momentum, mass resolution
 - Very precise vertex resolution
 - $\sigma_{IP} = 20 \mu m$ to detect long-lived *D* and *B* decays

PID from Cherenkov

LHCb collected luminosity

New particles in a glance

67 new hadrons discovered by LHCb!

https://www.nikhef.nl/~pkoppenb/particles.html

Selected topics

- Amplitude analysis of $B^+ \rightarrow D^{*\pm}D^{\mp}K^+$ [arXiv: 2406.03156]
- Exotic $J/\psi\phi$ resonances in diffractive processes in pp collisions [arXiv: 2407.14301]
- Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ [arXiv: 2407.12475]
- Study of radiative decays of $\chi_{c1}(3872)$ [arXiv: 2406.17006]
- Amplitude analysis of $B^+ \rightarrow D^{*-}D_S^+\pi^+$ [arXiv: 2405.00098]
- Observation of $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$ [arXiv: 2403.03586]
- Search for prompt production of pentaquarks in open charm final states [arXiv: 2404.07131]
- Observation of $\Lambda_b^0 \to \Sigma_c^{(*)++} D^{(*)-} K^-$ [arXiv: 2404.19510]

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: signal yields

• Using the full LHCb dataset of 9 fb⁻¹: $D^{*-} \rightarrow \overline{D}^0 (\rightarrow K^+ \pi^- \& K^+ \pi^- \pi^- \pi^+) \pi^-$

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: amplitude analysis

■ Amplitudes of $B^+ \to R(D^{*+}D^-)K^+$ and $B^+ \to R(D^+D^{*-})K^+$ linked by *C*-parity ⇒ allowing determination of *C*-parities of *R* resonances

$$\begin{aligned} \mathcal{A}(x) &= \frac{1+d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} c_j A_j(x) + \sum_{k \in R(D^{*-}K^+, D^+K^+)} c_k A_k(x) \right\} & \longleftarrow B^+ \to D^+ D^{*-}K^+ \\ &+ \frac{1-d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} C_j \times c_j A_j(x) + \sum_{l \in R(D^{*+}K^+, D^-K^+)} c_l A_l(x) \right\} & \longleftarrow B^+ \to D^{*+}D^-K^+ \\ \checkmark \ d &= 1 \text{ for } B^+ \to D^+ D^{*-}K^+; \ d &= -1 \text{ for } B^+ \to D^{*+}D^-K^+ \end{aligned}$$

 $\square R$ resonances with $J^P = 1^+$: S-wave & D-wave

$$f_{R,S/D}(m) = \frac{\gamma_{S/D}}{m_0^2 - m^2 - im_0[\gamma_S^2 \Gamma_S(m) + \gamma_D^2 \Gamma_D(m)]}$$

□Other resonances: Breit-Wigner

□Nonresonant contributions to
$$D^{*\pm}D^{\mp}$$
:
 $f_R(m) = e^{(\alpha + \beta i)(m^2 - m_0^2)}$ for NR_0^{-+} ; otherwise $f_R(m) = 1$

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: fit results

[arXiv: 2406.03156]

• All components in baseline fit have significance $> 5\sigma$

9/7/24

Component	$J^{P(C)}$
$\mathrm{EFF}_{1^{++}}$	1^{++}
$\eta_c(3945)$	0^{-+}
$\chi_{c2}(3930)^{\dagger}$	2^{++}
$h_c(4000)$	1^{+-}
$\chi_{c1}(4010)$	1^{++}
$\psi(4040)$ †	1
$h_c(4300)$	1^{+-}
$T^*_{\bar{c}\bar{s}0}(2870)^{0}$ [†]	0^+
$T^*_{\bar{c}\bar{s}1}(2900)^{0}$ [†]	1^{-}
$\mathrm{NR}_{1^{}}(D^{*\mp}D^{\pm})$	1
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	0
$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}

*Fit fractions in paper

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: $D^{*\pm}D^{\mp}$ system

• Four charmonium(-like) are observed decaying to $D^{*\pm}D^{\mp}$

At lease three of them are first observation

Component	$J^{P(C)}$	-		This w	vork	$c\bar{c}$ predi	ction [34]
	0	X(3940)?	$\eta_c(3945)$	$J^{PC} = 0^{-+}$	$\eta_c(3S)$	$J^{PC} = 0^{-+}$
$\mathrm{EFF}_{1^{++}}$	1^{++}		m_0	$=3945^{+28}_{-17}^{+28}_{-28}^{+37}$	$\Gamma_0 = 130^{+92}_{-49}{}^{+101}_{-70}$	$m_0 = 4064$	$\Gamma_0 = 80$
$\chi_{c2}(3930)^{\dagger}$	2^{++}			$h_c(4000)$	$J^{PC} = 1^{+-}$	$h_c(2P)$	$J^{PC} = 1^{+-}$
$\psi(4040)$ †	1		m_0	$=4000^{+17}_{-14}{}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$	$m_0 = 3956$	$\Gamma_0 = 87$
$\mathrm{NR}_{1^{}}(D^{*\mp}D^{\pm})$	1	new		$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$	$\chi_{c1}(2P)$	$J^{PC} = 1^{++}$
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	$0^{}$	IIC vv	m_0 =	$= 4012.5 {}^{+3.6}_{-3.9} {}^{+4.1}_{-3.7}$	$\Gamma_0 = 62.7^{+7.0}_{-6.4}{}^{+6.4}_{-6.6}$	$m_0 = 3953$	$\Gamma_0 = 165$
$NR_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}			$h_c(4300)$	$J^{PC} = 1^{+-}$	$h_c(3P)$	$J^{PC} = 1^{+-}$
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}		<i>m</i> ₀ =	$= 4307.3 \substack{+6.4 + 3.3 \\ -6.6 - 4.1}$	$\Gamma_0 = 58 {}^{+28}_{-16} {}^{+28}_{-25}$	$m_0 = 4318$	$\Gamma_0 = 75$
		_				GI mode	1
						hep-ph/()505002

- Significances for those charmonium(like) states >6.1σ
- J^{PC} for each state is determined to be >5.7σ better than other hypotheses

```
• \chi_{c1}(4010) could be the partner of \chi_{c1}(3872)
```

Liming Zhang

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: $T^*_{\overline{cs}}$ states

[arXiv: 2406.03156]

 $\checkmark T^*_{\bar{c}\bar{s}0}(2870)^0 \to D^{*-}K^+ \text{ forbidden}$ $\checkmark \mathcal{B}(T^*_{\bar{c}\bar{s}1}(2900)^0 \to D^{*-}K^+) / \mathcal{B}(T^*_{\bar{c}\bar{s}1}(2900)^0 \to D^-K^+) < 0.21 @ 95\% CL$ $\lim_{\text{Liming Zhang}} L_{\text{Liming Zhang}} \to D^-K^+) < 0.21 @ 95\% CL$

Central exclusive production (CEP)

Study J/ψφ resonances in CEP

✓ Experimentally clean even @LHC
✓ Spin-parity option narrowed down
✗ Much smaller rate

 γ -pomeron

J/ψ

 γ - γ

μ+

μ-

pomeron-pomeron

*glueball

 χ_{c}

00000000

$X(2^{-})$					
X(4150)	4.8(8.7)	$4146 \pm 18 \pm 33$	$135\pm28{+59\atop-30}$	$2.0\pm0.5{}^{+0.8}_{-1.0}$	\mathbf{S} \mathbf{E} \mathbf{F}
 $X(1^{-})$					
 X(4630)	$5.5 \ (5.7)$	$4626 \pm 16 {}^{+\ 18}_{-\ 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$	0.600 1.00 1.00 1.00 1.00 1.00
All $X(0^+)$				$20 \pm 5 {}^{+ 14}_{- 7}$	
X(4500)	20 (20)	$4474 \pm 3 \pm 3$	$77\pm6{}^{+10}_{-8}$	$5.6 \pm 0.7 {}^{+ 2.4}_{- 0.6}$	
X(4700)	$17 \ (18)$	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$	
$\mathrm{NR}_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8 {}^{+ 19}_{- 11}$	
All $X(1^+)$				$26 \pm 3 {+ 8 \atop - 10}$	X(4140) = X(4500)
X(4140)	$13 \ (16)$	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3 {}^{+ 19}_{- 6}$	
X(4274)	18 (18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$	$2.8\pm0.5{}^{+0.8}_{-0.4}$	100 X(4630)
X(4685)	15 (15)	$4684 \pm 7 {}^{+ 13}_{- 16}$	$126 \pm 15 {}^{+ 37}_{- 41}$	$7.2 \pm 1.0 {}^{+ 4.0}_{- 2.0}$	
 All $Z_{cs}(1^+)$				$25 \pm 5 {}^{+ 11}_{- 12}$	$m_{I/\mu\nu\phi}$ [GeV]
$Z_{cs}(4000)$	15 (16)	$4003 \pm 6 {}^{+}_{-}{}^{4}_{-}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$	<i>στφ</i> φ
 $Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+ 43}_{- 30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4 {}^{+ 10}_{- 7}$	

4.8 [GeV]

$X \rightarrow J/\psi \phi$ in CEP

First exotic hadron measurement in CEP!

[arXiv: 2407.14301]

Mass & width measurements: slightly higher mass of *X*(4500)

Parameter (MeV)	This Letter	Ref. [12]
$M_{\chi_{c1}(4274)}$	$4298 \pm 6 \pm 9$	$4294 \pm 4^{+3}_{-6}$
$\Gamma_{\chi_{c1}(4274)}$	$92^{+22}_{-18}\pm 57$	$53 \pm 5 \pm 5$
$M_{\chi_{c0}(4500)}$	$4512.5^{+6.0}_{-6.2}\pm 3.0$	$4474 \pm 3 \pm 3$
$\Gamma_{\chi_{c0}(4500)}$	$65^{+20}_{-16} \pm 32$	$77 \pm 6^{+10}_{-8}$
9/7/24		Liming Zhan

Cross-section measurements:

$$\begin{split} \sigma_{\chi_{c1}(4140)} &\times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4140)} = (0.80 \pm 0.15 \pm 0.28) \,\text{pb}, \\ \sigma_{\chi_{c1}(4274)} &\times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4274)} = (0.73 \pm 0.08 \pm 0.17) \,\text{pb}, \\ \sigma_{\chi_{c0}(4500)} &\times \mathcal{B}_{\text{eff}}^{\chi_{c0}(4500)} = (0.42^{+0.09}_{-0.08} \pm 0.06) \,\text{pb}, \\ \sigma_{\chi_{c1}(4685) + \chi_{c0}(4700)} \\ &\times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4685) + \chi_{c0}(4700)} = (0.14^{+0.07}_{-0.06} \pm 0.06) \,\text{pb}, \\ \sigma_{\text{NR}} &\times \mathcal{B}_{\text{eff}}^{\text{NR}} = (0.43^{+0.24}_{-0.18} \pm 0.20) \,\text{pb}, \end{split}$$

$B^+ \rightarrow \psi(2S) K^+ \pi^+ \pi^-$: amplitude analysis [arXiv: 2407.12475]

- Can study $K^+\pi^+\pi^-$ system, crucial for NP studies of $B \to K\pi\pi(\gamma/\mu\mu)$
- Can also study charmonium-like exotic states
- With ~1000 signal decays, Belle only studied the $K^+\pi^+\pi^-$ system [PRD 83 (2011) 032005]
- LHCb performed the first full amplitude analysis on this decay
- Baseline fit contributions
 - 6 K'^+ states
 - 11 exotic states: most are very broad
 - Exotic states improve χ^2_{7D} /ndf from 2.05 to 1.21

Decay channel	Fit fraction [%]
$B^+ \to \chi_{c0}(4475)K^+$	$18.45 \pm 1.31 \pm 2.92$
$B^+ \to \psi(2S) K^*(1680)^+$	$8.15 \pm 1.31 \pm 3.51$
$B^+ \to \psi(2S) K_1(1270)^+$	$7.60 \pm 0.85 \pm 1.35$
$B^+[P] \to \psi(2S) K_1(1270)^+$	$7.52 \pm 0.60 \pm 1.08$
$B^+[D] \to \psi(2S) K_1(1270)^+$	$6.81 \pm 0.45 \pm 1.18$
$B^+ \to \psi(2S) K_1(1400)^+$	$5.78 \pm 0.62 \pm 0.92$
$B^+ \to \psi(2S) K(1460)^+$	$5.26 \pm 0.48 \pm 0.87$
$B^+[P] \to T_{c\bar{c}1}(4200)^+ K^*(892)^0$	$4.60 \pm 0.54 \pm 2.17$
$B^+ \to T_{c\bar{c}\bar{s}1}(4600)^0 \pi^+$	$4.42 \pm 0.98 \pm 2.17$

9/7/24

Fit projections

- Fit quality is acceptable, 7D $\chi^2/ndf = 1.21$
- Resonances are generally broad

Exotic contributions

- 4 $X^0 \rightarrow \psi(2S)\pi^+\pi^-$ states are identified
 - Main decay mode is $\psi(2S)\rho^0$
 - □ Similar but broader that the states observed in $B^+ \rightarrow J/\psi \phi K^+$
 - They might not be the same, $\psi(2S)\rho^0$ has I=1, $J/\psi\phi$ has I=0

							-
Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	_
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}	
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227 \pm 26 \pm 22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40	States in $B^+ \rightarrow$
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}	$\frac{D}{1/\psi\phi K^+}$
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}	
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13	. –
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}	
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31	
$T_{c\bar{c}\bar{s}1}(4600)^0$	1+	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$				•
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925{\pm}22{\pm}47$	$255 \pm 55 \pm 127$				
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$				
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30	-
							-

Exotic contributions

- 3 $T_{c\bar{c}}^{(*)} \rightarrow \psi(2S)\pi$ states are identified
 - Confirmed $Z_c(4430)^+$ seen in $\overline{B}^0 \to \psi(2S)\pi^+K^-$
 - Confirmed $Z_c(4200)^+$ seen in $\overline{B}^0 \to J/\psi \pi^+ K^-$, and $J^P = 1^+$ is determined for the 1st time
 - $\Box T_{c\bar{c}}(4055)^+ \text{ seen in } e^+e^- \rightarrow \psi(2S)\pi^+\pi^- \text{ is also needed}$

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227 \pm 26 \pm 22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31
$T_{c\bar{c}\bar{s}1}(4600)^0$	1^{+}	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$			
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925{\pm}22{\pm}47$	$255 \pm 55 \pm 127$			
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$			
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30

Exotic contributions

• 3 new $T_{c\bar{c}\bar{s}} \rightarrow \psi(2S)K\pi$ states are observed

• $\psi(2S)K$ mass above $Z_{cs}(4000)^+$, only tail of $Z_{cs}(4000)^+$ can contribute

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [MeV]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [\text{MeV}]$
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227 \pm 26 \pm 22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31
$T_{c\bar{c}\bar{s}1}(4600)^0$	1+	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$			
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925 \pm 22 \pm 47$	$255 \pm 55 \pm 127$			
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$			
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30

new

Radiative decays of $\chi_{c1}(3872)$

- Nature of $\chi_{c1}(3872)$ still under debate, while study of radiative decays provides a way to probe it
- Only evidence of $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ was seen experimentally before

		Raha	$\Gamma_{\chi_{c1}(3872) \to \psi}$	$\gamma(2S)\gamma$		
Reference		συψ	$\gamma = \Gamma_{\chi_{c1}(3872)}$	J/ψγ		
T. Barnes and S. Godfrey		[67]	5.8	\overline{cc}		
T. Barnes, S. Godfrey and S. Swanson		69	2.6	$c\overline{c}$		
F. De Fazio		[84]	(1.64 ± 0.25)	$c\overline{c}$		
BQ. Li and K. T. Chao		85	1.3	\overline{cc}	Г	
Y. Dong <i>et al.</i>	21	[86]	1.3 - 5.8	\overline{cc}		
A. M. Badalian <i>et al.</i>	\sim -	[87]	(0.8 ± 0.2)	\overline{cc}		
J. Ferretti, G. Galata and E. Santopinto		[88]	6.4	$c\overline{c}$		
A. M. Badalian, Yu. A. Simonov and B. L.	G. Bakker	[89]	2.4	$c\overline{c}$		
W. J. Deng <i>et al.</i>		[90]	1.3	\overline{cc}		Belle 20
F. Giacosa, M. Piotrowska and S. Goito		[71]	5.4	$c\overline{c}/vc$		ı ——
E. S. Swanson		[81]	0.38%	$D\overline{D}^*$	X	
Y. Dong <i>et al.</i>		[86]	0.33%	$D\overline{D}^*$		\mathbf{X}
D. P. Rathaud and A. K. Rai	// 1	91	0.25	$D\overline{D}^*$		
R. F. Lebed and S. R. Martinez		92	0.33%	$D\overline{D}^*$		
B. Grinstein, L. Maiani and A. D. Polosa		93	3.6%	$D\overline{D}^*$		
FK. Guo et al.		82	$0.21(g_2'/g_2)^2$	DD*		
D. AS. Molnar, R. F. Luiz and R. Higa		[83]	2 - 10	$D\overline{D}^*$		
E. Cincioglu <i>et al.</i>	mixed	[94]	< 4	$D\overline{D}^*$	L	
S. Takeuchi, M. Takizawa and K. Shimizu		95	1.1 - 3.4	$D\overline{D}^*$	0	1
B. Grinstein, L. Maiani and A. D. Polosa		[93]	$> (0.95^{+0.01}_{-0.07})$	$c\overline{c}q\overline{q}$	Ŭ	-

5

Radiative decays of $\chi_{c1}(3872)$ (cont.)

• Update at LHCb using $B^+ \rightarrow \chi_{c1}(3872)K^+$ decay with 9 fb⁻¹ Run1+Run2 data

LHCb meets theory workshop

 $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$

Run1: $N = 40 \pm 8$; **5**. 3σ

Run2: N = 63 + 10; 6. 7 σ

Summary and prospects

- LHCb keeps making important contributions to heavy hadron spectroscopy, both for conventional or exotic hadrons
- In Run 3, the upgraded LHCb detector and an improved softwareonly trigger system will be implemented

BACKUP

Two methods for spectroscopy

- Direct production in *pp* collisions
 - Combine a heavy flavour hadron with one or more light particles
 - Pros: High statistics, in principle can study all states
 - Cons: Large combinatorial background, hard to determine J^P

- Production by a heavier particle decay
 - Usually with amplitude analysis
 - Pros: Low background, Better determination of J^P
 - Cons: Low cross-section, limited mass range

Charmonia in an unquenched quark model

		Ther	eotical pred	ictions	
Exper	iment results	GI	Unquenc hed	states	
η _c (3945)	$m_0 = 3945^{+28+37}_{-17-28}$	4064	4022	n (35)	
0-+	$\begin{split} &\Gamma_0 \\ &= 130^{+92+101}_{-49-70} \end{split}$	80	62	η _c (33)	
<i>h</i> _c (4000)	$m_0 = 4000^{+17+29}_{-14-22}$	3956	3961	h (2D)	
1+-	$\Gamma_0 = 130^{+92+101}_{-49-70}$	87	66	$n_c(2P)$	
χ _{c1} (4010)	$m_0 = 4012.5^{+3.6+4.1}_{-3.9-3.7}$	3953	3990	v (2D)	
1++	$\Gamma_0 = 62.7^{+7.0+6.4}_{-6.4-6.6}$	165	60	X _{c1} (4 F)	
<i>h</i> _c (4300)	$ \begin{array}{c} m_0 \\ = 4307.3^{+6.4+3.3}_{-6.6-4.1} \end{array} $	4318	4307	$h_c(3P)$	
1+-	$\Gamma_0=58^{+28+28}_{-16-25}$	75	25	• • •	

arXiv: 2312.10296

9/7/24

The LHCb Experiment

- LHCb is a dedicated flavour physics experiment at the LHC
 - □ >10⁴ × larger *b* production rate than the B factories @ Y(4S)
 - Access to all *b*-hadrons: B^+ , B^0 , B_s^0 , B_c^+ , *b*-baryons
- Can also study hadron spectroscopy and exotic states
- Acceptance optimised for forward $b\overline{b}$ production

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2024

