

The $\Omega(2012)$ as a $\overline{K}\Xi^*(1530)$ hadronic molecule

谢聚军

中国科学院近代物理研究所 南方核科学理论研究中心

2024年7月28日@烟台,第四届LHCb物理前沿研讨会

Outline

Motivation

 $\bar{K}\Xi^*(1530)$ and $\eta\Omega$ interactions in s wave and $\bar{K}\Xi$ in d wave Searching $\Omega(2012)$ in the $\Omega_c^0 \to \pi^+\Omega^-(2012) \to \pi^+(\bar{K}\Xi)^-$ decay

Summary

Observation of an Excited Ω^- Baryon

PHYSICAL REVIEW LETTERS 121, 052003 (2018)

FIG. 2. The (a) $\Xi^0 K^-$ and (b) $\Xi^- K_S^0$ invariant mass distributions in data taken at the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonance energies. The curves show a simultaneous fit to the two distributions with a common mass and width.

and I = 0

XI Baryons (S = -2, I = 1/2)		
Note on Xi Resonances	Xi(1950)	
Xi0	Xi(2030)	
Xi-	Xi(2120)	
Xi(1530)	Xi(2250)	
Xi(1620)	Xi(2370)	
Xi(1690)	Xi(2500)	
Xi(1820)		
Collapse Xi Barvons table		

Omega Baryons (S = -3, I = 0)

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

$\Omega(2012)^{-}$

$$(J^P) = 0(?^-)$$
 Status: ***

Seen in $\Xi^0 K^-$ and $\Xi^- K^0_S$ decays with a combined significance of 8.3 standard deviations.

Ω(2012)⁻ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2012.4±0.7±0.6	520	YELTON	18A BELL	In $T(1S)$, $T(2S)$, $T(3S)$
		<u>Ω(2012)</u> [_] W	IDTH	
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
6.4 ^{+2.5} ±1.6	520	YELTON	18A BELL	In $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

$\Omega(2012)^-$ DECAY MODES

Branching fractions are gi	iven relative to t	the one DEFINE	D AS 1.
----------------------------	--------------------	-----------------------	---------

Omega-					
			Mode	Fraction (Γ_i/Γ)	Confidence level
Omega(2012)-		Γ ₁	ΞK		
0 (2250)		Γ2	$(\Xi\pi)K$		
Omega(2250)-	$\langle \zeta \zeta \rangle$	Γ3	$\Xi^0 K^-$	DEFINED AS 1	
0	$\mathcal{S}\mathcal{S}\mathcal{S}$	Γ4	$\Xi^-\overline{K}^0$	0.83 ± 0.21	
Omega(2380)-		Γ ₅	$\Xi^{0}\pi^{0}K^{-}$	<0.30	90%
0		Γ ₆	$\Xi^{0}\pi^{-}K^{0}$	<0.21	90%
Omega(2470)-		Г ₇	$\Xi^{-}\pi^{0}K^{0}$	<0.7	90%
Collapse Omega Baryons table		Г ₈	$\Xi^{-}\pi^{+}K^{-}$	<0.08	90%

Before "the observation"

Chiral quark Model Predictions

W.L. Wang, F. Huang, Z.Y. Zhang, Y.W. Yu and F. Liu, $\Omega\omega$ states in a chiral quark model, Commun. Theor. Phys. 48, 695 (2007).

W.L. Wang, F. Huang, Z.Y. Zhang, Y.W. Yu and F. Liu, A Possible Omega pi molecular state, Eur. Phys. J. A32, 293 (2007).

W.L. Wang, F. Huang, Z.Y. Zhang and F. Liu, Xi anti-K interaction in a chiral model, J. Phys. G35, 085003 (2008).

W.L. Wang, F. Huang, Z.Y. Zhang and F. Liu, omega phi states in chiral quark model, Mod. Phys. Lett. A25, 1325 (2010).

Five-quark picture Predictions

C.S. An, B.C. Metsch and B.S. Zou, Mixing of the low-lying three- and five-quark Ω states with negative parity, Phys. Rev. C87, 065207 (2013).

C.S. An and B.S. Zou, Low-lying Ω states with negative parity in an extended quark model with Nambu-Jona-Lasinio interaction, Phys. Rev. C89, 055209 (2014).

S.G. Yuan, C.S. An, K.W. Wei, B.S. Zou and H.S. Xu, Spectrum of low-lying sssqqbar configurations with negative parity, Phys. Rev. C87, 025205 (2013).

Quark Model Predictions

Strangenss -2 and -3 baryons in a quark model with chromodymics Kuang Ta Chao, Nathan Isgur, and Gabriel Karl, PRD23, 155 (1981). $M_{\Omega^*} = 2020 \text{ MeV } with \ J^P = \frac{3}{2}$ Chiral Unitary Approach Prediction 0.08 (S,I)=(-3,0) $\Xi \overline{K}$ Baryonic resonances from baryon decuplet-meson octet interaction 0.06 Sourav Sarkar^{*}, E. Oset, M.J. Vicente Vacas [T]² (1/MeV²) Nuclear Physics A 750 (2005) 294–323 Ω (?) 0.04 Couplings of the resonance with S = -3 and I = 0 to various channels 0.02 2141 - i38ZRgi gi $\Xi^* \overline{K}$ 1.1 - i0.81.4 3.3 + i0.4 $\Omega \eta$ 3.4 0 1300 1500 1700 1900 2100

Two channels are in s-wave.

 E_{CM} (MeV)

Effective filed theory: chiral unitary approach

Summing All order contributions:

The $\Xi^* \overline{K}$ and $\Omega \eta$ Interaction Within a Chiral Unitary Approach^{*}

Si-Qi Xu (徐思琦),^{1,2} Ju-Jun Xie (谢聚军),^{2,3,†} Xu-Rong Chen (陈旭荣),² and Duo-Jie Jia (贾多杰)¹

Commun. Theor. Phys. 65 (2016) 53–56

 $-\ln(-s - (M_l^2 - m_l^2) + 2q_l\sqrt{s})]\},$

Fig. 3 Results of varying $a(\mu)$ over the $3/2^- \Omega$ resonance mass.

After "the observation"

Quark Model

 J^P could be $3/2^-$, but, $1/2^-$ cannot be completely excluded

- L.Y. Xiao and X.H. Zhong, Phys. Rev. D 98, 034004 (2018)
- Z.Y. Wang, L.C. Gui, Q.F. Lü, L.Y. Xiao and X.H. Zhong, Phys. Rev. D98,114023 (2018).
- M.S. Liu, K.L. Wang, Q.F. Lü and X.H. Zhong, Phys. Rev. D101, 016002 (2020) .

Hadronic molecule

T.M. Aliev, K. Azizi, Y. Sarac and H. Sundu, Phys. Rev. D98, 014031 (2018); arXiv:1806.01626. M.V. Polyakov, H.D. Son, B.D. Sun and A. Tandogan, Phys. Lett. B792, 315 (2019); arXiv:1806.04427.

- M.P. Valderrama, Phys. Rev. D98, 054009 (2018); arXiv:1807.00718.
- Y.H. Lin and B.S. Zou, Phys. Rev. D98, 056013 (2018); arXiv:1807.00997.
- T.M. Aliev, K. Azizi, Y. Sarac and H. Sundu, Eur. Phys. J. C78, 894 (2018); arXiv:1807.02145.
- R. Pavao and E. Oset, Eur. Phys. J. C78, 857 (2018); arXiv:1808.01950.
- Y. Huang, M.Z. Liu, J.X. Lu, J.J. Xie and L.S. Geng, Phys. Rev. D98, 076012 (2018); arXiv:1807.06485.

 J^P should be $3/2^-$, and large decay width to $\bar{K}\pi\Xi$.

Coupled channels dynamics in the generation of the $\Omega(2012)$ resonance Eur. Phys. J. C (2018) 78:857

 $= \int_{|\vec{q}| < q'_{\max}} \frac{d^3 q}{(2\pi)^3} \frac{(q/q_{on})^4}{2\omega_{\vec{K}}(\vec{q})} \frac{M_{\Xi}}{E_{\Xi}(\vec{q})} \frac{1}{\sqrt{s} - \omega_{\vec{K}}(\vec{q}) - E_{\Xi}(\vec{q}) + i\epsilon},$

Fig. 2 Decay of $H \to \overline{K} \Xi$ through the creation and re-scattering of the $\overline{K} \Xi^*$ and $\eta \Omega$ pairs

$\alpha \ (10^{-8} \text{ MeV}^{-3})$	$\beta \ (10^{-8} \ {\rm MeV^{-3}})$	q_{\max} (MeV)	$(m_{\Omega^*}, \Gamma_{\Omega^*})$ (MeV)	$\Gamma(\bar{K} \Xi) (\text{MeV})$	$\Gamma(\pi \overline{K} \Xi) (\text{MeV})$
5.0	0.1	735	(2012.19, 6.36)	3.35	3.01
4.0	1.5	735	(2012.4, 6.2)	3.22	2.98
3.0	3.0	735	(2012.36, 6.19)	3.25	2.94
2.0	4.5	735	(2012.26, 6.23)	3.34	2.89

Search for $\Omega(2012) \rightarrow K\Xi(1530) \rightarrow K\pi\Xi$ at Belle

PHYSICAL REVIEW D 100, 032006 (2019)

Using data samples of e^+e^- collisions collected at the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonances with the Belle detector, we search for the three-body decay of the $\Omega(2012)$ baryon to $K\pi\Xi$. This decay is predicted to dominate for models describing the $\Omega(2012)$ as a $K\Xi(1530)$ molecule. No significant $\Omega(2012)$ signals are observed in the studied channels, and 90% credibility level upper limits on the ratios of the branching fractions relative to $K\Xi$ decay modes are obtained.

What should we do next?

Reanalysis of the newly observed Ω^* state in hadronic molecule model

Yong-Hui Lin,^{1,2,*} Fei Wang,^{2,†} and Bing-Song Zou^{1,2,3,‡}

arXiv:1910.13919

parity). It is found that the latest experimental measurements are compatible with the $1/2^+$ and $3/2^+ \bar{K}\Xi(1530)$ molecular pictures, while the $5/2^+ \bar{K}\Xi(1530)$ molecule shows the larger $\bar{K}\pi\Xi$ threebody decay compared with the $\bar{K}\Xi$ decay as the case of S-wave molecule. Thus, the newly observed $\Omega(2012)$ can be interpreted as the $1/2^+$ or $3/2^+ \bar{K}\Xi(1530)$ molecule state according to current experiment data.

The molecular picture for the $\Omega(2012)$ revisited

Natsumi Ikeno,
1,2,* Genaro Toledo,2,3,† and Eulogio $\operatorname{Oset}^{2,\,\ddagger}$

arXiv:2003.07580

channels is obtained from chiral Lagrangians. The transition potential between $\bar{K}\Xi^*$, $\eta\Omega$ and $\bar{K}\Xi$ is taken in terms of free parameters, which together with a cut off to regularize the meson-baryon loops are fitted to the $\Omega(2012)$ data. We find that all data including the recent Belle experiment on $\Gamma_{\Omega^* \to \pi \bar{K}\Xi}/\Gamma_{\Omega^* \to \bar{K}\Xi}$, are compatible with the molecular picture stemming from meson baryon interaction of these channels.

Revisiting the $\Omega(2012)$ as a hadronic molecule and its strong decays

Jun-Xu Lu,¹ Chun-Hua Zeng,^{2,3} En Wang,⁴ Ju-Jun Xie,^{2,3,4,*} and Li-Sheng Geng^{1,4,†} arXiv:2003.07588

mode of $\Omega(2012) \rightarrow \overline{K\Xi}$. In this work, we revisit the newly observed $\Omega(2012)$ from the molecular perspective where this resonance appears to be a dynamically generated state with spin-parity $3/2^$ from the coupled channels interactions of the $\overline{K\Xi}^*(1530)$ and $\eta\Omega$ in s-wave and $\overline{K\Xi}$ in d-wave. With the model parameters for the d-wave interaction, we show that the ratio of these decay fractions reported recently by the Belle collaboration can be easily accommodated.

$\bar{K}\Xi^*$, $\eta\Omega$ and $\bar{K}\Xi$ coupled channel interactions in s wave

 $G_{11} = \int_{0}^{\Lambda_{1}} \frac{d^{3}q}{(2\pi)^{3}} \frac{1}{2\omega_{1}} \frac{M_{\Xi^{*}}}{E_{1}} \frac{1}{\sqrt{s - \omega_{1} - E_{1} + i\epsilon}}$ $V_{11} = V_{22} = V_{33} = 0,$ $V_{12} = V_{21} = -\frac{3}{4f^2}(k_1^0 + k_2^0),$ $G_{22} = \int_{0}^{\Lambda_2} \frac{d^3q}{(2\pi)^3} \frac{1}{2\omega_2} \frac{M_\Omega}{E_2} \frac{1}{\sqrt{s - \omega_2 - E_2 + i\epsilon}}$ $V_{13} = V_{31} = \alpha q_3^2$ $V_{23} = V_{32} = \beta a_2^2$ $G_{33} = \int_{0}^{\Lambda_3} \frac{d^3q}{(2\pi)^3} \frac{(q/q_3)^4}{2\omega_3} \frac{M_{\Xi}}{E_3} \frac{1}{\sqrt{s - \omega_3 - E_3 + i\epsilon}}$ $k_1^0 = \frac{s + m_{\bar{K}}^2 - M_{\Xi^*}^2}{2\sqrt{s}},$ $k_2^0 = \frac{s + m_\eta^2 - M_\Omega^2}{2\sqrt{s}}, \qquad q_3 = \frac{\sqrt{[s - (m_{\bar{K}} + M_{\Xi})^2][s - (m_{\bar{K}} - M_{\Xi})^2]}}{2\sqrt{s}}$ $T = V + VGT = [1 - VG]^{-1}V$

Jun-Xu Lu, Chun-Hua Zeng, En Wang, Ju-Jun Xie, and Li-Sheng Geng, arXiv:2003.07588

Pole of scattering amplitude T

$$T_{ij} = \frac{g_{ii}g_{jj}}{\sqrt{s} - z_R}, \qquad \qquad Z_R = M_R - i\frac{\Gamma_R}{2}$$

 g_{kk} is the coupling of the resonance to the kth channel.

Assumption
$$\Lambda_1 = \Lambda_2 = \Lambda_3 = q_{\max}$$

$$\begin{split} M = 2012.4 \pm 0.9 \,\,\mathrm{MeV} & \Gamma = 6.4 \pm 3.0 \,\,\mathrm{MeV} & R_{\bar{K}\Xi}^{\bar{K}\pi\Xi} < 11.9\% \\ & \alpha < -5 \times 10^{-8} \mathrm{MeV^{-3}}, \ \beta > 15 \times 10^{-8} \mathrm{MeV^{-3}} \\ & q_{\mathrm{max}} > 720 \,\,\mathrm{MeV}. \end{split}$$

Two body decay

Three body decay

Very small phase space!!!

Results

$q_{\rm max} \ ({\rm MeV})$	$\alpha \ (10^{-8} \ {\rm MeV^{-3}})$	$\beta \ (10^{-8} \ {\rm MeV^{-3}})$	(M_R, Γ_R) (MeV)	$ g_{\Omega^*\bar{K}\Xi^*} $	$ g_{\Omega^*\eta\Omega} $	$ g_{\Omega^*\bar{K}\Xi} $
735	-6.6 ± 0.8	16.5 ± 0.8	$(2012.3 \pm 0.4, 8.3 \pm 0.6)$	1.83 ± 0.02	3.35 ± 0.06	0.42 ± 0.02
750	-9.9 ± 0.5	18.5 ± 0.5	$(2012.2 \pm 0.4, 7.8 \pm 0.8)$	1.80 ± 0.01	3.46 ± 0.06	0.41 ± 0.03
800	-17.5 ± 0.6	20.6 ± 0.5	$(2012.4 \pm 0.5, 6.4 \pm 1.3)$	1.58 ± 0.02	3.60 ± 0.04	0.37 ± 0.04
850	-20.2 ± 1.0	19.6 ± 0.8	$(2012.4 \pm 0.5, 6.4 \pm 1.1)$	1.39 ± 0.03	3.78 ± 0.04	0.37 ± 0.03
900	-20.8 ± 1.7	17.5 ± 1.1	$(2012.4 \pm 0.5, 6.4 \pm 1.3)$	1.25 ± 0.04	3.85 ± 0.04	0.37 ± 0.04

$\Gamma_{\Omega(2012)\to\bar{K}\pi\Xi} (\text{MeV})$	$\Gamma_{\Omega(2012)\to\bar{K}\Xi}$ (MeV)	$\operatorname{Br}[\Omega(2012) \to \bar{K}\pi\Xi]$	$\operatorname{Br}[\Omega(2012) \to \bar{K}\Xi]$	R
0.87 ± 0.03	7.32 ± 0.64	$(10.5^{+0.5}_{-0.8})\%$	$(88.4^{+0.5}_{-1.5})\%$	11.88%
0.84 ± 0.04	6.96 ± 0.63	$(9.5^{+0}_{-1.0})\%$	$(90.5^{+0}_{-2.6})\%$	10.50%
0.66 ± 0.02	5.57 ± 1.37	$(10.3^{+1.6}_{-1.7})\%$	$(86.5^{+1.6}_{-2.9})\%$	11.90%
0.51 ± 0.03	5.66 ± 1.07	$(7.9^{+1.9}_{-1.5})\%$	$(88.2^{+1.9}_{-1.6})\%$	9.00%
0.41 ± 0.03	5.73 ± 1.25	$(6.5^{+1.7}_{-1.9})\%$	$(90.0^{+1.7}_{-2.2})\%$	7.22%

(i) The Ω(2012) state was only observed by the Belle collaboration;
(ii) Most of its properties, such as decay fractions and spin, are not determined yet.

$$\Omega(2012)^{-}$$
 $I(J^{P}) = 0(?^{-})$ Status: ***

Seen in $\Xi^0 K^-$ and $\Xi^- K_S^0$ decays with a combined significance of 8.3 standard deviations.

It is also generally accepted that $\Omega(2012)$ is a 1*P* orbital excitation of the ground Ω baryon with three strange quarks, whose quantum numbers are $J^P = 3/2^-$.

Searching for new production mode is very important! 19

The
$$\Omega(2012)$$
 in the $\Omega_c^0 \to \pi^+ \Omega^-(2012) \to \pi^+ (\bar{K}\Xi)^-$ and $\pi^+ (\bar{K}\Xi\pi)^-$ decays

FIG. 1. Dominant quark-line schematic diagram for
$$\Omega_c^0 - \pi^+$$
MB decay.

$$\begin{split} \mathbf{MB} \rangle &= |s(\bar{u}u + \bar{d}d + \bar{s}s)ss\rangle \\ &= \frac{1}{\sqrt{3}} (|K^- \Xi^{*0}\rangle + |\bar{K}^0 \Xi^{*-}\rangle) - \frac{1}{\sqrt{3}} |\eta\Omega\rangle, \\ &= \sqrt{\frac{2}{3}} |\bar{K}\Xi^*\rangle_{I=0} - \frac{1}{\sqrt{3}} |\eta\Omega\rangle, \end{split}$$

 $|\Xi^{*0}\rangle = \frac{1}{\sqrt{3}}|uss + sus + ssu\rangle,$

 $|\Xi^{*-}\rangle = \frac{1}{\sqrt{3}} |dss + sds + ssd\rangle,$

 $|\Omega\rangle = |sss\rangle,$

 $|\eta\rangle = \frac{1}{\sqrt{3}} |\bar{u}u + \bar{d}d - \bar{s}s\rangle.$

FIG. 2. Diagram for the meson-baryon final-state interaction for the $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ (\bar{K}\Xi)^-$ decay.

$$\mathcal{M}_{\Omega_c^0 \to \pi \bar{K}\Xi} = V_p \left(\sqrt{\frac{2}{3}} G_{\bar{K}\Xi^*}(M_{\rm inv}) t_{\bar{K}\Xi^* \to \bar{K}\Xi}(M_{\rm inv}) - \sqrt{\frac{1}{3}} G_{\eta\Omega}(M_{\rm inv}) t_{\eta\Omega \to \bar{K}\Xi}(M_{\rm inv}) \right)$$

$$t_{\bar{K}\Xi^*\to\bar{K}\Xi} = \frac{g_{\Omega^*\bar{K}\Xi^*}g_{\Omega^*\bar{K}\Xi}}{M_{\rm inv} - M_{\Omega^*} + i\Gamma_{\Omega^*}/2}, \quad t_{\eta\Omega\to\bar{K}\Xi} = \frac{g_{\Omega^*\eta\Omega}g_{\Omega^*\bar{K}\Xi}}{M_{\rm inv} - M_{\Omega^*} + i\Gamma_{\Omega^*}/2},$$

$$\frac{d\Gamma_{\Omega_c^0 \to \pi^+ \bar{K}\Xi}}{dM_{\bar{K}\Xi}} = \frac{1}{16\pi^3} \frac{M_\Xi}{M_{\Omega_c^0}} p_\pi^3 p_{\bar{K}} \sum |\mathcal{M}_{\Omega_c^0 \to \pi^+ \bar{K}\Xi}|^2$$

$$\frac{\pi^{1}}{\Omega_{c}^{0}} \xrightarrow{K} \frac{\pi^{1}}{\Omega(2012)} \xrightarrow{K} \frac{\pi^{1}}{\Sigma} \xrightarrow{\pi^{1}} M_{\Omega_{c}^{0} \to \pi^{+}\bar{K}\Xi\pi} = \frac{g_{\Xi}*\Xi\pi\bar{p}_{\pi}\mathcal{M}_{\Omega_{c}^{0} \to \pi^{+}\bar{K}\Xi^{*}}}{M_{\Xi\pi} - M_{\Xi^{*}} + i\Gamma_{\Xi^{*}}/2}$$
FIG. 3: Schematic diagram for the decay of $\Omega_{c}^{0} \to \pi^{+}(\bar{K}\Xi\pi)^{-} \to \pi^{+}(\bar{K}\Xi^{*}(1530))^{-} \to \pi^{+}(\bar{K}\Xi\pi)^{-} \to \pi^{+}(\bar{K}\Xi\pi)^{-} \to \pi^{+}(\bar{K}\Xi\pi)^{-} \to \pi^{+}(\bar{K}\Xi\pi)^{-} \to \pi^{+}(\bar{K}\Xi\pi)^{-} \to \pi^{+}(\bar{K}\Xi^{*}(1530))^{-} \to \pi^{+}(\bar{K}\Xi\pi)^{-} \to$

Invariant mass distributions

Model	$\Lambda = q_{\rm max} \ ({\rm MeV})$	M_{Ω^*} (MeV)	Γ_{Ω^*} (MeV)	$g_{\Omega^*\bar{K}\Xi^*}$	$g_{\Omega^*\eta\Omega}$	$g_{\Omega^*ar{K}\Xi}$
Ι	735	2012.3	8.3	(1.826, -0.064)	(3.350, 0.159)	(-0.419, -0.040)
II	750	2012.2	7.8	(1.796, -0.128)	(3.448, 0.298)	(-0.399, -0.109)
III	800	2012.4	6.4	(1.574, 0.188)	(3.590, -0.313)	(-0.307, 0.201)
IV	850	2012.4	6.4	(1.386, 0.090)	(3.777, -0.151)	(-0.353, 0.109)
V	900	2012.4	6.4	(1.251, 0.063)	(3.853, -0.111)	(-0.363, 0.082)

Theoretical study of the $\Omega(2012)$ state in the $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ (\bar{K}\Xi)^-$ and $\pi^+ (\bar{K}\Xi\pi)^-$ decays

Chun-Hua Zeng, Jun-Xu Lu, En Wang, Ju-Jun Xie, and Li-Sheng Geng Phys. Rev. D **102**, 076009 – Published 19 October 2020

New experimental results

Evidence for the decay $\Omega_c^0 o \pi^+ \Omega(2012)^- o \pi^+ (ar K \Xi)^-$

Belle Collaboration • Y. Li (Fudan U.) et al. (Jun 1, 2021)

Published in: Phys.Rev.D 104 (2021) 5, 052005 • e-Print: 2106.00892 [hep-ex]

Observation of $\Omega(2012)^- \to \Xi(1530)\bar{K}$ and measurement of the effective couplings of $\Omega(2012)^-$ to $\Xi(1530)\bar{K}$ and $\Xi\bar{K}$ In 2010

Belle Collaboration (Jul 7, 2022)

e-Print: 2207 02090 [hep-ev]

$$\mathcal{R}_{\Xi\bar{K}}^{\Xi\pi\bar{K}} = 0.97 \pm 0.24 \pm 0.07,$$

below the $\bar{K}\Xi(1530)$ mass threshold. In this new analysis, $M_{\pi\Xi} < 1.517 \,\text{GeV}$ is required and the signal shape of $\Omega(2012)$ was parameterized with a Flatté-like function to account for the allowed phase space. Such selection criteria were not included in the previous analysis in Ref. [20], and they improve the signal-background separation and hence increase the signal yield. The new result of the ratio $\mathcal{R}_{K\Xi}^{\bar{K}\pi\Xi}$ is $0.97 \pm 0.24 \pm 0.07$. This is consistent with the

Summary

We conclude that

Chinese Physics Letters **41**, 081402 (2024)

The $\Omega(2012)$ as a Hadronic Molecule

Ju-Jun Xie(谢聚军)^{1,2,3*} and Li-Sheng Geng(耿立升)^{4,5,6,3*}

The $\Omega(2012)$ is a hadronic molecular state,

dynamically generated from coupled channel interactions of $\bar{K}\Xi^*(1530)$ and $\eta\Omega$ in s wave and $\bar{K}\Xi$ in d wave.

Thank you very much for your attention!