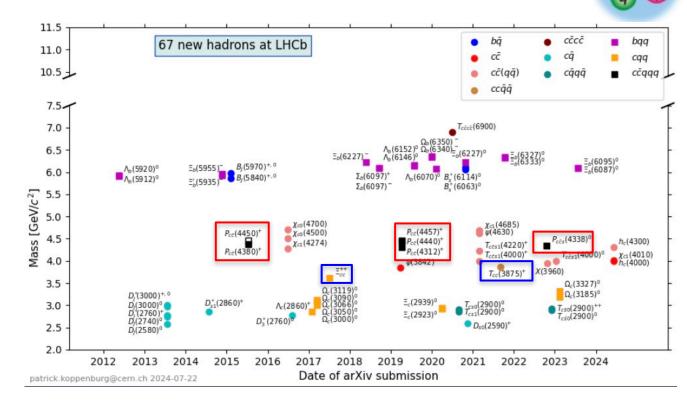
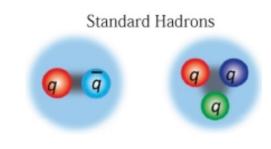


Doubly charmed pentaquark states with and without strangeness

Based on: Phys. Rev. D109, 094018 (2024); arXiv:2405.09067 Collaborators: F. B. Duan, Z. Y. Yang, Q. N. Wang, X. L. Chen, Q. Wang

第四届LHCb前沿物理研讨会 2024.07.28 烟台

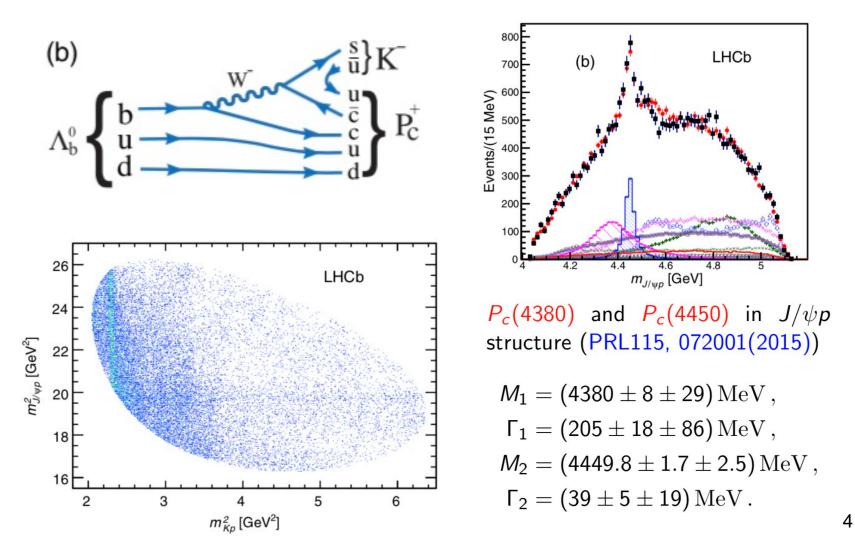

1



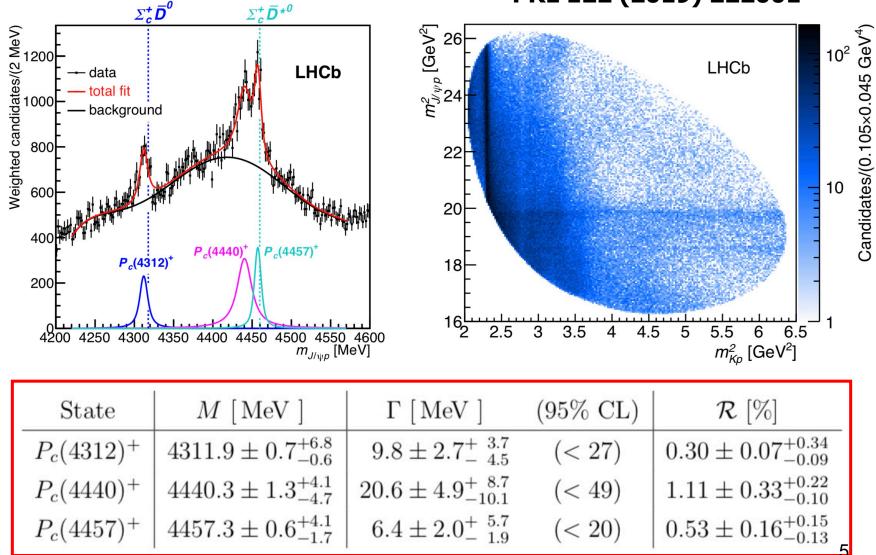
- Exotic hadrons and pentaquark states
- Doubly charmed pentaquarks without strangeness
- Doubly charmed pentaquarks with strangeness
- Summary

Quark model and Exotic hadrons

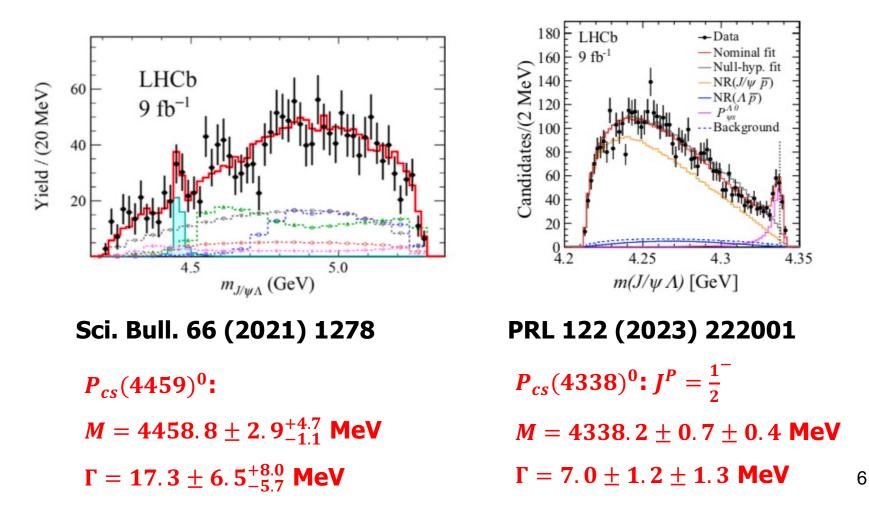
- > Quark Model: $q\bar{q}$ mesons and qqq baryons
- Exotic Hadrons: hadrons beyond QM, such as multiquarks, hybrids, glueballs...
- Many contributions from LHCb!

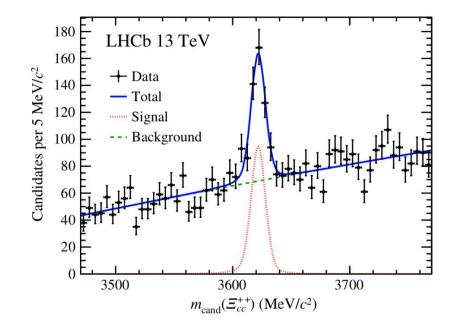


Exotic Hadrons


Pentaquarks: LHCb's observation in 2015

Two hidden-charm Pc states were observed in $\Lambda_b^0 \rightarrow J/\psi K^- p$ process


Combined Run 2 data in 2019:

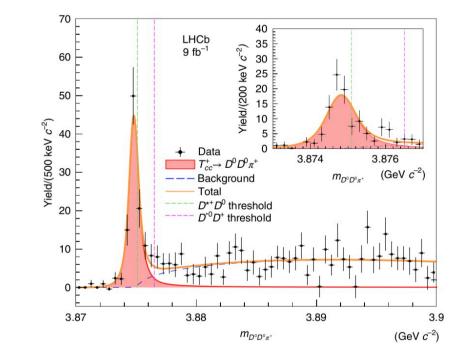

Pcs pentaquarks with strangeness

Two hidden-charm pentaquark states with strangeness were observed in the $J/\psi \Lambda$ invariant mass spectrum!

Doubly charmed baryon Ξ_{cc}^{++}

LHCb discovered Ξ_{cc}^{++} in $\Lambda_c^+ K^- \pi^+ \pi^+$ final states:

A long-lived, weakly decaying doubly charmed baryon:


 $M = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \text{ MeV}$ $\tau = 0.256^{+0.024}_{-0.022} \pm 0.014 \text{ ps} \qquad \text{PRL119 (2017) 112001;}$ PRL121 (2018) 052002.

7

Doubly charmed tetraquark $T_{cc}(3875)^+$

In 2022, LHCb reported T_{cc}^+ in the mass spectrum of $D^0 D^0 \pi^+$:

an exotic narrow tetraquark state with $cc\overline{u}\overline{d}$ and I = 0, $J^P = 1^+$

,

$$\delta m_{\rm BW} = -273 \pm 61 \pm 5 {}^{+11}_{-14} \,\text{keV} \,c^{-2}$$

 $\Gamma_{\rm BW} = 410 \pm 165 \pm 43 {}^{+18}_{-38} \,\text{keV},$

Nature Phys. 18 (2022) 751; Nature Comm. 13 (2022) 3351.

Searching for doubly charmed pentaquarks?

- Various theoretical investigations on both hadronic molecule and compact pentaquark configurations:
- One-boson-exchange (OBE) models, Chiral effective field theory, Bethe-Sapeter approach, QCD sum rules, Resonating group method, Chiral quark model.....
- ► In QCD sum rules, we study the doubly charmed pentaquarks without strangeness in the $\Lambda_c^{(*)} D^{(*)}, \Sigma_c^{(*)} D^{(*)}$ molecular picture and with strangeness in both the $\Xi_c^{(*')} D^*, \Xi_{cc}^* K^*, \Omega_{cc}^* \rho$ molecular picture and diquark-diquark-antiquark compact picture.

P_{cc} pentaquarks without strangeness

We construct the $\Lambda_{c}^{(*)}D^{(*)}$, $\Sigma_{c}^{(*)}D^{(*)}$ molecular currents:

$$\begin{split} J^{\Lambda_c D} &= \varepsilon^{abc} [(u_a^T \mathcal{C}\gamma_\mu c_b) \gamma_5 \gamma^\mu d_c - (d_a^T \mathcal{C}\gamma_\mu c_b) \gamma_5 \gamma^\mu u_c] [\bar{d}_d i \gamma_5 c_d], \\ J^{\Lambda_c D^*}_{\mu} &= \varepsilon^{abc} [(u_a^T \mathcal{C}\gamma_\nu c_b) \gamma_5 \gamma^\nu d_c - (d_a^T \mathcal{C}\gamma_\nu c_b) \gamma_5 \gamma^\nu u_c] [\bar{d}_d \gamma_\mu c_d], \\ J^{\Lambda_c^* D}_{\mu\nu} &= \varepsilon^{abc} [(u_a^T \mathcal{C}\gamma_\mu c_b) d_c - (u_a^T \mathcal{C}\gamma_\mu d_b) c_c] [\bar{d}_d i \gamma_5 c_d], \\ J^{\Lambda_c^* D^*}_{\mu\nu} &= \varepsilon^{abc} [(u_a^T \mathcal{C}\gamma_\nu c_b) d_c - (u_a^T \mathcal{C}\gamma_\nu d_b) c_c] [\bar{d}_d \gamma_\mu c_d] + (\mu \leftrightarrow \nu), \\ J^{\Sigma_c D} &= \varepsilon^{abc} [(u_a^T \mathcal{C}\gamma_\mu c_b) \gamma_5 \gamma^\mu d_c + (d_a^T \mathcal{C}\gamma_\mu c_b) \gamma_5 \gamma^\mu u_c] [\bar{d}_d i \gamma_5 c_d], \\ J^{\Sigma_c D^*}_{\mu\nu} &= \varepsilon^{abc} [(u_a^T \mathcal{C}\gamma_\mu c_b) \gamma_5 \gamma^\nu d_c + (u_a^T \mathcal{C}\gamma_\mu c_b) \gamma_5 \gamma^\nu u_c] [\bar{d}_d \gamma_\mu c_d], \\ J^{\Sigma_c^* D^*}_{\mu\nu} &= \varepsilon^{abc} [2(u_a^T \mathcal{C}\gamma_\mu c_b) u_c + (u_a^T \mathcal{C}\gamma_\mu u_b) c_c] [\bar{d}_d \gamma_\mu c_d] + (\mu \leftrightarrow \nu) \end{split}$$

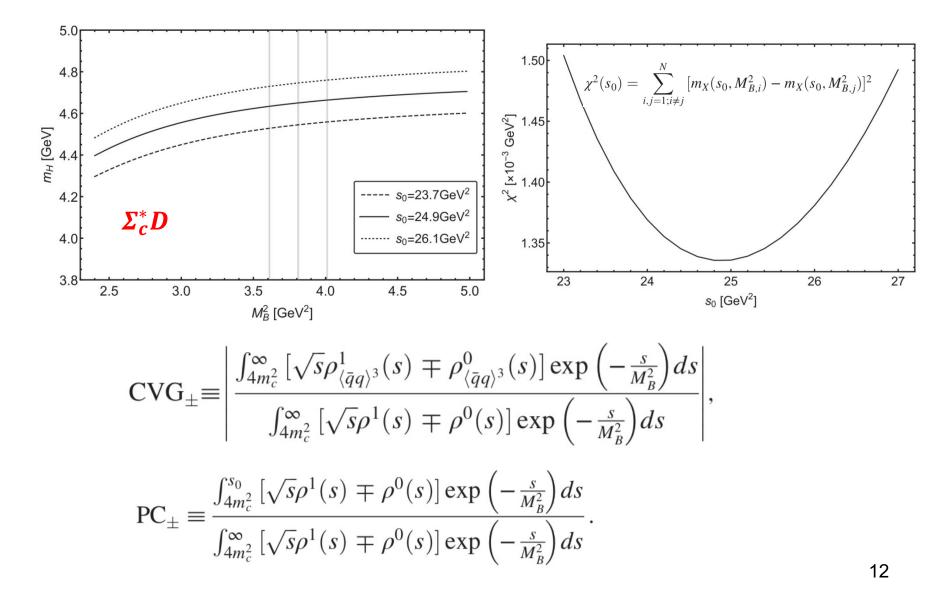
Both negative and positive parities are considered!

Parity projected sum rules:

The non- γ_5 and γ_5 couplings to opposite parities:

$$\langle 0|J_{-}|X_{1/2^{-}}\rangle = f_{X}^{-}u(p),$$

$$\langle 0|J_{-}|X_{1/2^{+}}\rangle = f_{X}^{+}\gamma_{5}u(p),$$


The invariant function contains both contributions

$$\Pi(p^2) = f_X^{-2} \frac{\hat{p} + M_X^-}{M_X^{-2} - p^2} + f_X^{+2} \frac{\hat{p} - M_X^+}{M_X^{+2} - p^2} + \cdots$$

The parity projected sum rules were adopted:

$$M_{j,\pm}^{2} = \frac{\int_{4m_{c}^{2}}^{s_{0}} \left[\sqrt{s}\rho_{j,\text{QCD}}^{1}(s) \mp \rho_{j,\text{QCD}}^{0}(s)\right] \exp\left(-\frac{s}{M_{B}^{2}}\right) s ds}{\int_{4m_{c}^{2}}^{s_{0}} \left[\sqrt{s}\rho_{j,\text{QCD}}^{1}(s) \mp \rho_{j,\text{QCD}}^{0}(s)\right] \exp\left(-\frac{s}{M_{B}^{2}}\right) ds},$$

P_{cc} pentaquark mass predictions:

P_{cc} pentaquark mass predictions:

PRD109 (2024) 094018

Current	J^P	$s_0[\text{GeV}^2]$	M_B^2 [GeV ²]	Mass [GeV]	Two-hadron threshold [GeV]
$J^{\Lambda_c D}$	$\frac{1}{2}$	19.5(±5%)	2.83-3.43	$4.13\substack{+0.10 \\ -0.09}$	4.15
$J^{\Sigma_c D}$	$\frac{1}{2}$	$18.3(\pm 5\%)$	3.40-3.70	$4.08\substack{+0.18 \\ -0.13}$	4.32
$J^{\Sigma_c D^*}$	$\frac{3}{2}$	$20.3(\pm 5\%)$	3.17-3.47	$4.14\substack{+0.18 \\ -0.15}$	4.46
$J^{\Sigma_c^*D}$	$\frac{3}{2}$	$22.8(\pm 5\%)$	3.82-4.22	$4.47\substack{+0.11 \\ -0.10}$	4.39
$J^{\Lambda_c D^*}$	$\frac{3}{2}$	$21.0(\pm 5\%)$	3.55-3.95	$4.31\substack{+0.11 \\ -0.10}$	4.29
$J^{\Lambda_c^*D}$	$\frac{3}{2}$	$22.8(\pm 5\%)$	2.91-3.51	$4.42\substack{+0.13 \\ -0.12}$	4.73
$J^{\Lambda_c^*D^*}$	$\frac{5}{2}$	$22.1(\pm 5\%)$	3.09-3.69	$4.41\substack{+0.17 \\ -0.14}$	4.86
$J^{\Sigma_c^*D^*}$	$\frac{5}{2}$	25.0(±5%)	4.0-4.6	$4.69^{+0.12}_{-0.11}$	4.53

- Some *P_{cc}* states were predicted to be lower than their thresholds!
- > Pentaquarks in the isospin quartet with I = 3/2 are absolute exotic: $[P_{cc}^{+++}(ccuu\overline{d}), P_{cc}^{++}(ccuu\overline{u}), P_{cc}^{+}(ccdd\overline{d}), P_{cc}^{0}(ccdd\overline{u})]$

Strong decays

PRD109 (2024) 094018

J^P	Current	Partial wave	$I = \frac{1}{2}$	$I = \frac{3}{2}$
$\frac{1}{2}$	$J^{\Lambda_c D}$	S	$\Xi_{cc}\pi$	Ø
2	J^{A_cD}	Р	$\Xi_{cc}\sigma$	Ø
	$J^{\Sigma_c D}$	S	$ \begin{array}{c} \Xi_{cc} \pi \\ \Xi_{cc} \sigma \\ \Xi_{cc} \pi \end{array} $	$\Xi_{cc}\pi$
	$J^{\mu_c \nu}$	Р		
$\frac{3}{2}$	$J^{\Sigma_c D^*}$	S	$\Xi_{cc}^{*}\pi$	$\Xi_{cc}^{*}\pi$
2	$J^{\mathcal{L}_c D}$	Р	$\Xi_{cc}^*\pi$ $\Xi_{cc}\sigma$	
	-S*D	S	$\Lambda_c D^*, \Sigma_c D^*, \Sigma_c^* D, \Xi_{cc} \rho / \omega, \Xi_{cc}^* \pi / \eta$	$\Sigma_c D^*, \Sigma_c^* D, \Xi_{cc} \rho, \Xi_{cc}^* \pi$
	$J^{\Sigma_c^*D}$	Р	$\Lambda_c(2595)D, \Xi_{cc}^{(*)}\sigma$	
	-1. D*	S	$\Lambda_c D^*, \Xi_{cc}^* \pi/\eta$	Ø
	$J^{\Lambda_c D^*}$	Р	$\Xi^{(*)}_{_{CC}}\sigma$	Ø
	A D	S	$\Lambda_c D^*, \Sigma_c^* D, \Sigma_c^{(*)} D^*, \Xi_{cc} \omega / ho, \Xi_{cc}^* \pi / \omega / ho / \eta / \eta'$	Ø
	$J^{\Lambda_c^*D}$	Р	$\Lambda_c(2595)D^{(*)}, \Lambda_c D_0/D_1, \Xi_{cc}^{(*)}\sigma/a_0/f_0(980)$	Ø
5-	$J^{\Lambda_c^*D^*}$	S		Ø
2		Р	$\Xi^*_{cc}\sigma$	Ø
	$J^{\Sigma_c^*D^*}$	S	$\Sigma_c^* D^*, \Xi_{cc}^* ho / \omega$	$\Sigma_c^* D^*, \Xi_{cc}^* ho$
	$J^{\omega_c \nu}$	Р	$\Lambda_c(2595)D^*, \Xi_{cc}^*\sigma/f_0(980)/a_0$	$\Xi_{cc}^* a_0$

Especially interesting for the triply and neutral charged pentaquarks:

$$P_{cc}^{+++} \rightarrow \Xi_{cc}^{(*)++} \pi^+ / \rho^+$$
, $\Sigma_c^{(*)++} D^{(*)+}$ and $P_{cc}^0 \rightarrow \Xi_{cc}^{(*)+} \pi^- / \rho^-$, $\Sigma_c^{(*)0} D^{(*)0}$

P_{ccs} pentaquarks with strangeness

- In heavy antiquark-diquark symmetry (HADS), a heavy diquark field with $\overline{3}_c$ behaves like a heavy antiquark in the color space: **QQ** ↔ \overline{Q} , $\overline{Q}\overline{Q}$ ↔ **Q**
- $\succ T^+_{cc}(cc\overline{u}\overline{d}) \leftrightarrow \overline{\Lambda}_c(\overline{c}\overline{u}\overline{d})$
- $\succ T^{a}_{c\overline{s}0}(cd\overline{u}\overline{s})^{0} \leftrightarrow \overline{P}_{\overline{c}\overline{c}\overline{s}}(\overline{c}\overline{c}\overline{u}\overline{s}d)^{--}$
- From the HADS point of view, one expects the mass relation

 $m(QQqq\bar{q}) - m(QQ\bar{q}\bar{q}) = m(qq\bar{q}\bar{Q}) - m(\bar{Q}\bar{q}\bar{q})$

> The observation of strange charmed tetraquark $T^a_{c\bar{s}0}(2900)^0$ sugguests the existence of strange doubly charmed pentaquarks!

P_{ccs} pentaquarks with strangeness

Interpolating currents in the $\boldsymbol{\Xi}_{\boldsymbol{c}}^{(*')}\boldsymbol{D}^{(*)}$ molecular picture:

$$\begin{split} \eta_{1} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{5} u_{b} \right) Q_{c} \right] \left[\bar{d}_{d} \gamma_{5} Q_{d} \right], \\ \eta_{2} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{\mu} \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{\mu} \gamma_{5} u_{b} \right) \gamma_{\mu} Q_{c} \right] \left[\bar{d}_{d} \gamma_{5} Q_{d} \right], \\ \eta_{3} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{5} u_{b} \right) \gamma_{\mu} Q_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{4\mu} &= \frac{1}{\sqrt{2}} \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{\nu} \gamma_{5} s_{b} - s_{a}^{T} C \gamma_{\nu} \gamma_{5} u_{b} \right) \gamma_{\nu} Q_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{5\mu} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_{a}^{T} C \gamma_{\mu} u_{b} \right) \gamma_{5} Q_{c} + \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} s_{c} + \left(Q_{a}^{T} C \gamma_{\mu} s_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{6} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_{a}^{T} C \gamma_{\mu} u_{b} \right) \gamma_{5} Q_{c} + \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} s_{c} + \left(Q_{a}^{T} C \gamma_{\mu} s_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\mu} Q_{d} \right], \\ \eta_{7,\mu\nu} &= \sqrt{\frac{2}{3}} \epsilon_{abc} \left[\left(s_{a}^{T} C \gamma_{\mu} u_{b} \right) \gamma_{5} Q_{c} + \left(u_{a}^{T} C \gamma_{\mu} Q_{b} \right) \gamma_{5} s_{c} + \left(Q_{a}^{T} C \gamma_{\mu} s_{b} \right) \gamma_{5} u_{c} \right] \left[\bar{d}_{d} \gamma_{\nu} Q_{d} \right] + \left(\mu \leftrightarrow \nu \right), \end{split}$$

Interpolating currents in the $\mathcal{Z}_{cc}^* K^*$, $\Omega_{cc}^* \pi/\rho$ molecular picture:

$$\begin{split} \xi_{1} &= \left[\epsilon_{abc}(Q_{a}^{T}C\gamma_{\mu}Q_{b})\gamma_{\mu}\gamma_{5}u_{c}\right]\left[\bar{d}_{d}\gamma_{5}s_{d}\right],\\ \xi_{2\mu} &= \left[\epsilon_{abc}(Q_{a}^{T}C\gamma_{\nu}Q_{b})\gamma_{\nu}\gamma_{5}u_{c}\right]\left[\bar{d}_{d}\gamma_{\mu}s_{d}\right],\\ \xi_{3\mu} &= \frac{1}{\sqrt{3}}\epsilon_{abc}\left[2\left(u_{a}^{T}C\gamma_{\mu}Q_{b}\right)\gamma_{5}Q_{c} + \left(Q_{a}^{T}C\gamma_{\mu}Q_{b}\right)\gamma_{5}u_{c}\right]\left[\bar{d}_{d}\gamma_{5}s_{d}\right],\\ \xi_{4} &= \frac{1}{\sqrt{3}}\epsilon_{abc}\left[2\left(u_{a}^{T}C\gamma_{\mu}Q_{b}\right)\gamma_{5}Q_{c} + \left(Q_{a}^{T}C\gamma_{\mu}Q_{b}\right)\gamma_{5}u_{c}\right]\left[\bar{d}_{d}\gamma_{\mu}s_{d}\right],\\ \xi_{5,\mu\nu} &= \frac{1}{\sqrt{3}}\epsilon_{abc}\left[2\left(u_{a}^{T}C\gamma_{\mu}Q_{b}\right)\gamma_{5}Q_{c} + \left(Q_{a}^{T}C\gamma_{\mu}Q_{b}\right)\gamma_{5}u_{c}\right]\left[\bar{d}_{d}\gamma_{\nu}s_{d}\right] + (\mu\leftrightarrow\nu),\\ \psi_{i} &= \xi_{i}\left(u\leftrightarrow s\right), \end{split}$$

Only spin-1 [*cc*] diquark field exists due to Pauli principle!

Interpolating currents in **two compact pentaquark pictures**:

$$J_{1,2} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_\mu s_l\right) \gamma_5 C \bar{d}_c^T,$$

$$J_{1,3} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_5 s_l\right) \gamma_\mu C \bar{d}_c^T,$$

$$J_{1,5\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_5 s_l\right) \gamma_5 C \bar{d}_c^T,$$

$$J_{1,8\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\nu Q_j\right) \left(u_k^T C \gamma_\nu s_l\right) \gamma_\mu C \bar{d}_c^T,$$

$$J_{1,9\mu\nu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C \gamma_\mu Q_j\right) \left(u_k^T C \gamma_\nu s_l\right) \gamma_5 C \bar{d}_c^T + (\mu \leftrightarrow \nu),$$

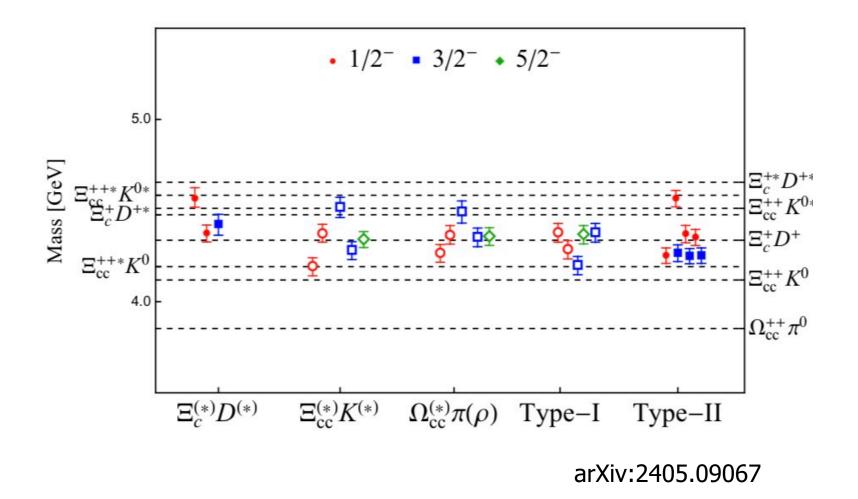
and

$$J_{2,1} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j \right) \left(Q_k^T C\gamma_5 s_l \right) \gamma_5 C \bar{d}_c^T,$$

$$J_{2,2} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_\mu u_j \right) \left(Q_k^T C\gamma_\mu s_l \right) \gamma_5 C \bar{d}_c^T,$$

$$J_{2,3} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_\mu u_j \right) \left(Q_k^T C\gamma_5 s_l \right) \gamma_\mu C \bar{d}_c^T,$$

$$J_{2,4} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j \right) \left(Q_k^T C\gamma_\mu s_l \right) \gamma_\mu C \bar{d}_c^T,$$


$$J_{2,5\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j \right) \left(Q_k^T C\gamma_5 s_l \right) \gamma_5 C \bar{d}_c^T,$$

$$J_{2,6\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j \right) \left(Q_k^T C\gamma_\mu s_l \right) \gamma_5 C \bar{d}_c^T,$$

$$J_{2,7\mu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_5 u_j \right) \left(Q_k^T C\gamma_5 s_l \right) \gamma_5 C \bar{d}_c^T,$$

$$J_{2,8\mu\nu} = \epsilon_{aij}\epsilon_{bkl}\epsilon_{abc} \left(Q_i^T C\gamma_\mu u_j \right) \left(Q_k^T C\gamma_\nu s_l \right) \gamma_5 C \bar{d}_c^T + (\mu \leftrightarrow \nu),$$

P_{ccs} pentaquark mass predictions:

Predictions for the HADS tetraquark partners:

Current	J^P	Structure	b[GeV]	$c[\text{GeV}^2]$	$m_{P_{bbs}}[\text{GeV}]$	$m_{T_{c\bar{s}}}[\text{GeV}]$	$J^P(T_{c\bar{s}})$
η_3	$\frac{1}{2}^{-}$	$\Xi_c^+ D^{*+}$	1.53	0.40	$10.04^{+0.06}_{-0.05}$	-	—
$\eta_{4\mu}$	$\frac{3}{2}^{-}$	$\Xi_c^{\prime +} D^{*+}$	1.67	0.25	$10.19\substack{+0.06 \\ -0.05}$	-	_
η_6	$\frac{1}{2}^{-}$	$\Xi_c^{*+}D^{*+}$	2.26	-0.35	$10.61^{+0.06}_{-0.05}$	-	_
ξ_1	$\frac{1}{2}^{-}$	$\Xi_{cc}^{++}ar{K}^0$	1.48	0.24	$9.93_{0.05}^{0.06}$	2.94	0+
$\xi_{2\mu}$	$\frac{3}{2}^{-}$	$\Xi_{cc}^{++}ar{K}^{*0}$	1.64	0.44	$10.17^{0.06}_{0.06}$	3.26	1+
$\xi_{3\mu}$	$\frac{3}{2}^{-}$	$\Xi_{cc}^{*++}ar{K}^0$	1.46	0.38	$9.96^{+0.06}_{-0.05}$	3.03	1+
ξ_4	$\frac{1}{2}^{-}$	$\Xi^{*++}_{cc}ar{K}^{*0}$	1.04	1.07	$9.59^{+0.07}_{-0.07}$	3.16	0+
$\xi_{5\mu\nu}$	$\frac{5}{2}^{-}$	$\Xi^{*++}_{cc}ar{K}^{*0}$	1.50	0.38	$9.99\substack{+0.06\\-0.05}$	3.07	$0^+, 1^+, 2^+$
ψ_1	$\frac{1}{2}^{-}$	$\Omega_{cc}^{*+}\pi^+$	1.48	0.30	$9.96^{+0.06}_{-0.05}$	2.99	0+
$\psi_{2\mu}$	$\frac{3}{2}^{-}$	$\Omega_{cc}^+ ho^+$	1.57	0.51	$10.04^{+0.06}_{-0.06}$	3.25	1+
$\psi_{3\mu}$	$\frac{3}{2}^{-}$	$\Omega_{cc}^{*+}\pi^+$	1.45	0.47	$9.96\substack{+0.06\\-0.05}$	3.09	1+
ψ_4	$\frac{1}{2}^{-}$	$\Omega_{cc}^{*+} ho^+$	1.16	0.88	$9.71^{+0.06}_{-0.06}$	3.12	0+
$\psi_{5\mu u}$	$\frac{5}{2}^{-}$	$\Omega_{cc}^{*+} ho^+$	1.61	0.25	$10.14^{+0.07}_{-0.06}$	3.08	$0^+, 1^+, 2^+$

arXiv:2405.09067

- The observations of hidden-charm pentaquarks and doubly charmed tetraquarks directly inspired the investigations on doubly charmed pentaquark states;
- We systematically predicted the mass spectra of the doubly charmed pentaquark states with and without strangeness;
- We suggest to search for the triply and neutral charged pentaquarks: $P_{cc}^{+++} \rightarrow \Xi_{cc}^{(*)++} \pi^+ / \rho^+, \Sigma_c^{(*)++} D^{(*)+}$ and $P_{cc}^0 \rightarrow \Xi_{cc}^{(*)+} \pi^- / \rho^-, \Sigma_c^{(*)0} D^{(*)0}$, which belong to the absolute exotic isospin quartet $[P_{cc}^{+++}(ccuu\bar{d}), P_{cc}^{++}(ccuu\bar{u}), P_{cc}^{+}(ccdd\bar{d}), P_{cc}^0(ccdd\bar{u})]$ with I = 3/2.

Thank you