

Lepton Flavor Universality Highlights from LHCb

Liang Sun Wuhan University

July/29/2024

Outline

- LFU tests in semi-leptonic B decays (Charged currents)
 - τ versus μ
 - For τ : muonic versus hadronic
- LFU tests in rare B decays (Neutral currents)
 - µ versus e
- Summary

Charged currents versus neutral currents

- One charged lepton in the final state
- Tree level
- Theoretically clean
- Abundance of data
- Experimentally challenging due to missing neutrino

- Dilepton final states
- Forbidden at tree level in SM
- Sensitive to NP
- Highly suppressed, statistically limited in experiments
- Mainly on e- μ asymmetry

Major experiments for LFU tests

colliders

Experimental challenges for LFU tests

- Hadronic part: most of uncertainties cancel in the ratio at 1st order
- Missing neutrinos for (semi-)leptonic processes:
 - e⁺e⁻ machines: inferred using beam condition & mising info
 - Hadron machines: more difficult, using info such as decay vertices, isolation info, kinematics of visible part, etc
- Electron: generally more difficult in experiments such as LHCb
- Muon: difficuties in μ/π separation for low-P tracks @ BESIII
- Tau lepton: short lifetime, decaying into final states with $\geq 1\nu$
 - e⁺e⁻ machines: $\tau \to e\overline{\nu}\nu$, $\mu\overline{\nu}\nu$, $\pi(\pi^0)\nu$
 - Hadron machines: $\tau \to \mu \overline{\nu} \nu$, $\pi \pi \pi (\pi^0) \nu$

LFU tests in semi-leptonic B decays

 $B^0 \rightarrow D^{*} \tau^* v$

R(D^(*)) measurements @ LHCb

Muonic $\tau \rightarrow \mu \overline{\nu} \nu$:

- Large statistics
- Study of τ and μ modes in one dataset
- Can measure R(D) and R(D*) simultaneously

Hadronic $\tau \rightarrow \pi \pi \pi (\pi^0) \overline{\nu}$:

PV

- Relatively high purity
- External BR measurement for normalization

 \overline{D}^0

 D^{*-}

 B^0

- Decay vertex of τ well measured to suppress dominant backgrounds
- 3π dynamics important for the separation of B-> D*DX backgrounds

PRL 131, 111802 (2023) PRD 108, 012018 (2023); PRD 109, 119902(E) (2024)

R(D^(*)) measurements @ LHCb

PRL 131, 111802 (2023) PRD 108, 012018 (2023); PRD 109, 119902(E) (2024)

R(D^(*)) measurements @ LHCb

arXiv:2406.03387 submitted to PRL

New results: $R(D^{(*)+})$ with $\tau \rightarrow \mu \nu \overline{\nu}$

- Using 2016 (2 fb⁻¹) data
- First measurement with dedicated $B \rightarrow H_c \tau (\rightarrow \mu \nu \nu) \nu$ trigger line for Run2
- 3D template fit to single $D^+ (\rightarrow K\pi\pi) \mu^-$ sample
 - π^0 from $D^{*+} \rightarrow D^+ \pi^0$ not reconstructed
 - Fast "track-only" simulation to boost statistics for templates
 - BDT-based isolation tools to separate $\overline{B}^0 \to D^+ \tau \nu$ & $\overline{B}^0 \to D^{*+} \tau \nu$, and suppress backgrounds

arXiv:2406.03387 submitted to PRL

New results: $R(D^{(*)+})$ with $\tau \rightarrow \mu \nu \overline{\nu}$

- Using 2016 (2 fb⁻¹) data
- First measurement yields:

$$\begin{split} R(D^+) &= 0.249 \pm 0.043 \pm 0.047, \\ R(D^{*+}) &= 0.402 \pm 0.081 \pm 0.085, \\ \text{correlation coefficient = -0.39} \end{split}$$

 Dominating systematic sources: FFs, doublecharm background shape and misID modelling
 MC sample size no longer a major limiting factor

(a) PRL 131, 111802 (2023)
(b) PRD 108, 012018 (2023); E
(c) arXiv:2406.03387

Current R(X) status

LFU tests in rare b-hadron decays

LFU tests in $b \rightarrow s\ell^+\ell^-$ decays

- $b \rightarrow s\ell^+\ell^-$ FCNC processes highly suppressed in SM
- NP may manifest in the loops and cause LFU violation $q_{max}^2 dB(B \rightarrow X, u^+u^-)$
- LFU tests use $q^{2} = m(\ell^{+}\ell^{-})^{2}$ $R_{X} = \frac{\int_{q_{\min}}^{q_{\max}} \frac{d\mathcal{B}(B_{q} \to X_{s}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{\min}}^{q_{\max}^{2}} \frac{d\mathcal{B}(B_{q} \to X_{s}e^{+}e^{-})}{dq^{2}} dq^{2}}$
 - Cancellation of hadronic uncertainties in the ratio => precise prediction of R_X

R(K^(*)) measurements @ LHCb

- Electrons & muons behave quite differently in the LHCb detector
- Lower efficiencies & worse resolution (energy loss) for electrons
- Double-ratio of branching fractions:

$$R_X = \frac{\mathcal{B}(B_q \to X_s \mu^+ \mu^-)}{\mathcal{B}(B_q \to X_s J/\psi(\mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B_q \to X_s J/\psi(e^+ e^-))}{\mathcal{B}(B_q \to X_s e^+ e^-)}$$

- Most of systematic uncertainties cancel to 1st order
- LFU in J/ $\psi \rightarrow \ell^+ \ell^-$ well established at $\$ level [BESIII, PRD 88, 032007 (2013)]
- Validated in $\psi(2S)$ mode

PRL 131 (2023) 051803 PRD 108 (2023) 032002

PRL 131 (2023) 051803 PRD 108 (2023) 032002

R(K^(*)) results @ LHCb

• Most precise LFU test in $b \rightarrow s \ell^+ \ell^-$ decays

Supersedes previous results

PRL 131 (2023) 051803 PRD 108 (2023) 032002

R(K^(*)) results @ LHCb

• Most precise LFU test in $b \rightarrow s\ell^+\ell^-$ decays

- Supersedes previous results
- Improved systematics of mis-IDed hadronic background in electron mode
- Now compatible with SM predictions at 0.2 σ level
- Uncertainties statistically dominated

LHCb-PAPER-2024-022, Preliminary

LFU in angular analysis of $B^0 \rightarrow K^{*0}l^+l^-$

- First angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ at central q² region
- Full Runs1-2 9fb⁻¹ analysis with 5D unbinned weighted fit
- LFU quantities derived by comparing to muon results [PRL 132 (2024) 131801]

Results are all consistent with LFU conservation hypothesis

 $\cos^2 \theta_k$

0

z

JHEP 05 (2024) 293

LFU in
$$D^+_{(s)} \rightarrow \pi^+ \phi(\rightarrow l^+ l^-)$$

- Based on 2016-2018 data (5.4 fb⁻¹) • The BF ratio $R_{\phi\pi} = \frac{B(\phi \to \mu^+ \mu^-)}{B(\phi \to e^+ e^-)}$ is
- The BF ratio $R_{\phi\pi} = \frac{B(\phi \rightarrow \mu^+ \mu^-)}{B(\phi \rightarrow e^+ e^-)}$ is measured in $D^+_{(s)}$ decays, and normalized wrt $B^+ \rightarrow K^+ J/\psi(\rightarrow l^+ l^-)$
 - $R_{\phi\pi} = 1.022 \pm 0.012 \,(\text{stat}) \pm 0.048 \,(\text{syst})$
 - Consistent with LFU within 1σ
 - Crucial for understanding experimental features of low-mass dileptons in the LHCb environment

Prospects on $b \rightarrow c l \nu$ LFU @ LHCb

- Broad program of related measurements underway
- With larger data samples, more efforts are need to have better control of systematics
- Fast MC production with small event size is certainly a move in the right direction
- High trigger efficiency essential at high pileup

Summary & outlook

- LFU tests in a large range of decay channels have been performed recently by LHCb, mostly in the beauty sector
- With improved precision or being first measurements, all results show good agreement with LFU
- R(D^(*)) results still show tension with SM
- LHCb is capable of exploring LFU in charm SL decays, although not as competitive as e⁺e⁻ experiments
- Synergy of different experiments important to improve precision
- Cooperation with theorists essential for more stringent LFU tests

Backup Slides